logo
Medical news
of the North Caucasus
Scientific journal
Mass media registration certificate dated December 7, 2006.
Series ПИ #ФС 77-26521.
Federal service for surveillance over non-violation of the legislation in the sphere of mass communications and protection of cultural heritage.
ISSN 2073-8137
rus
русский
eng
english

Site search



Correspondence address
310 Mira Street, Stavropol, Russia, 355017

Tel
+7 865 2352511, +7 865 2353229.

E-mail
medvestnik@stgmu.ru

Phylogenetic analysis of Bacillus anthracis strains isolated in the Republic of Dagestan

[Original research] [Infectious diseases]
Olga Viktorovna Bobrysheva; Sergey Vladimirovich Pisarenko; Dmitriy Kovalev; Evgeniy Eremenko; Alla Ryazanova; Olga Viktorovna Semenova; Diana Vasilyevna Ulshina; Alexandr Kulichenko;

The objective was to present the data of the molecular genetic analysis of Bacillus anthracis strains isolated during outbreaks of anthrax in the Republic of Dagestan. For phylogenetic analysis, genomic sequences of 6 B. anthracis strains and 266 B. anthracis genomic sequences from the international GenBank database were used. As a result of genetic analysis, it was found that the strains isolated in 1957 and 1963 belong to the main genetic line B, branch B.Br.002 and have a high degree of genetic relationship with strains from Western Siberia, which indicates their common origin. Isolates distinguished in 2019 belong to the TEA Br.008/011 group, A.Br.118 branch. These strains form a separate branch and are closely related to the «STI» clade. The data obtained can be used in the differentiation of strains during the investigation of outbreaks of anthrax.

Download

References:
1. Carlson C. J., Kracalik I. T., Ross N., Alexander K. A., Hugh-Jones M. E. [et al.]. The global distribution of Bacillus anthracis and associated anthrax risk to humans, livestock and wildlife. Nat. Microbiol. 2019;4(8):1337-1343. https://doi.org/10.1038/s41564-019-0435-4
2. Hendricks K., Person M. K., Bradley J. S., Mongkolrattanothai T., Hupert N. [et al.]. Clinical Features of Patients Hospitalized for All Routes of Anthrax, 1880-2018: A Systematic Review. Clin. Infect. Dis. 2022;75(Suppl.3):S341-S353. https://doi.org/10.1093/cid/ciac534
3. Kulichenko A. N., Buravceva N. P., Rjazanova A. G., Eremenko E. I. Anthrax in the North Caucasus. Maykop, 2016. (In Russ.).
4. Koteneva E. A., Tsygankova O. I., Kalinin A. V., Abramovich A. V. The spectrum of canSNP-genotypes as an indication of intraspecific genetic and phenotypic variety of Bacillus anthracis strains isolated in North Caucasus and in its adjacent territories. Medicinskii Vesynik Severnogo Kavkaza. – Medical News of North Caucasus. 2019;14(4):580-583. (In Russ.). https://doi.org/10.14300/mnnc.2019.14144
5. Eremenko E. I., Ryazanova A. G., Tsygankova O. I., Tsyganova E. A., Buravtseva N. P., Kulichenko A. N. Genotype diversity of Bacillus anthracis strains isolated from the Caucasus region. Molekulyarnaya genetika, mikrobiologiya i virusologiya. – Molecular Genetics, Microbiology and Virology. 2012;27(2):74-78. (In Russ.). https://doi.org/10.3103/S0891416812020024
6. de Sena Brandine G., Smith A. D. Falco: high-speed FastQC emulation for quality control of sequencing data. F1000Res. 2019;8:1874. https://doi.org/10.12688/f1000research.21142.2
7. Bankevich A., Nurk S., Antipov D., Gurevich A. A., Dvorkin M. [et al.]. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012;19(5):455-477. https://doi.org/10.1089/cmb.2012.0021
8. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30(14):2068-2069. https://doi.org/10.1093/bioinformatics/btu153
9. Treangen T. J., Ondov B. D., Koren S., Phillippy A. M. The harvest suite for rapid core-genome alignment and visualization of thousands of intraspecific microbial genomes. Genome Biol. 2014;15(11):524. https://doi.org/10.1186/s13059-014-0524-x
10. Tamura K., Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 1993;10(3):512-526. https://doi.org/10.1093/oxfordjournals.molbev.a040023
11. Gargis A. S., McLaughlin H. P., Conley A. B., Lascols C., Michel P. A. [et al.]. Analysis of Whole-Genome Sequences for the Prediction of Penicillin Resistance and β-Lactamase Activity in Bacillus anthracis. mSystems. 2018;3(6):e00154-18. https://doi.org/10.1128/mSystems.00154-18
12. Pisarenko S. V., Eremenko E. I., Ryazanova A. G., Kovalev D. A., Buravtseva N. P. [et al.]. Phylogenetic analysis of Bacillus anthracis strains from Western Siberia reveals a new genetic cluster in the global population of the species. BMC Genomics. 2019;20(1):692. https://doi.org/10.1186/s12864-019-6060-z
13. Eremenko E. I., Pechkovskii G. A., Pisarenko S. V., Ryazanova A. G., Kovalev D. A. [et al.]. Phylogenetics of Bacillus anthracis isolates from Russia and bordering countries. Infection, Genetics and Evolution. 2021;92:10489. https://doi.org/10.1016/j.meegid.2021.104890

Keywords: Bacillus anthracis, genome-wide sequencing, genome-wide analysis of single nucleotide polymorphism, comparative genomics


Founders:
Stavropol State Medical Academy
Pyatigorsk State Research Institute of Balneotherapeutics
Pyatigorsk State Pharmaceutical Academy