logo
Medical news
of the North Caucasus
Scientific journal
Mass media registration certificate dated December 7, 2006.
Series ПИ #ФС 77-26521.
Federal service for surveillance over non-violation of the legislation in the sphere of mass communications and protection of cultural heritage.
ISSN 2073-8137
rus
русский
eng
english

Site search



Correspondence address
310 Mira Street, Stavropol, Russia, 355017

Tel
+7 865 2352511, +7 865 2353229.

E-mail
medvestnik@stgmu.ru

The effect of glufimet and mefargin on physical performance and sensorimotor function of rats after chronic alcohol intoxication

[Original research] [Clinical Pharmacology] [Pharmacology]
Lyudmila E. Borodkina; Yulia Andreevna Smolnyakova; Elena Andreevna Muzyko; Yakov Vladimirovich Tivon; Ivan Nikolaevich Tyurenkov; Vladimir Ivanovich Petrov;

The effect of derivatives of GABA and glutamic acid – the composition of 4-amino-3-phenylbutanoic acid methyl ester hydrochloride with L-arginine in a 1:1 ratio (mefargin) and β-phenyl-glutamic acid hydrochloride dimethyl ester (glufimet) – on physical performance and sensorimotor function of rats after of chronic alcohol intoxication (CAI) caused by 6 months replacing drinking water with a 10 % solution of ethanol with sucrose (50 g/l) was studied. There were detection of the deterioration in physical endurance and muscle strength, impaired coordination, fine motor skills, tactile, pain and temperature sensitivity in animals after CAI of the control group compared with the intact group. Rats, in which there were injected intraperitoneally for 14 days with mefargin (25 mg/kg), glufimet (29 mg/kg) and the drug of comparison phenotropil (25 mg/kg) had higher physical performance indicators and sensorimotor function compared with the control group. Glufimet and mefargin were liken or superior to phenotropil in effectiveness.

Download

References:
1.Nunes P. T., Kipp B. T., Reitz N. L., Savage L. M. Aging with alcohol-related brain damage: critical brain circuits associated with cognitive dysfunction. Int. Rev. Neurobiol. 2019;148:101-168. https://doi.org/10.1016/bs.irn.2019.09.002
2. Hammoud N., Jimenez-Shahed J. Chronic neurologic effects of alcohol. Clin. Liver Dis. 2019;23(1):141-155. https://doi.org/10.1016/j.cld.2018.09.010
3. Rice J., Gu C. Function and mechanism of myelin regulation in alcohol abuse and alcoholism. Bioessays. 2019;41(7):e1800255. https://doi.org/10.1002/bies.201800255
4. Kurushina O. V., Barulin A. E., Chernovolenko E. P. Alcoholic polyneuropathy: ways of diagnostics and therapy. Meditsinskiy sovet. – Medical Council. 2019;1:58-63. (In Russ.). https://doi.org/10.21518/2079-701X-2019-1-58-63
5. Simon L., Jolley S. E., Molina P. E. Alcoholic myopathy: pathophysiologic mechanisms and clinical implications. Alcohol Res. 2017;38(2):207-217. 6. Akbar M., Egli M., Cho Y., Song B., Noronha A. Medications for alcohol use disorders: An overview. Pharmacology and therapeutics. 2018;(185):1-75. https://doi.org/10.1016/j.pharmthera.2017.11.007
7. Perfilova V. N., Popova T. A., Prokofiev I. I., Ostrovsky O. V., Muzyko E. A., Tyurenkov I. N. The influence of glufimet on the oxidant system, mitochondrial respiration of heart and brain, blood pressure, and indices of hemostasis in stressed animals. Eksperimental’naya i klinicheskaya farmakologiya. – Experimental and Clinical Pharmacology. 2017;80(3):18-25. (In Russ.). https://doi.org/10.30906/0869-2092-2017-80-3-18-25
8. Kustova M. V., Perfilova V. N., Prokofiev I. I., Tyurenkov I. N. The effect of a new derivative of GABA, the compound RGPU-260 on the functional reserves of the heart of rats subjected to chronic alcohol intoxication. Byulleten’ eksperimental’noj biologii i mediciny. – Bulletin of experimental biology and medicine. 2020;170(11):590-596. (In Russ.).
9. Perfilova V. N., Kustova M. V., Popova T. A., Khusainova G. H., Prokofiev I. I. [et al.]. Cardioprotective effects of a new glutamic acid derivative in chronic alcohol intoxication. Alcohol. 2021;93(1):1-10. https://doi.org/10.1016/j.alcohol.2021.01.006
10. Kryzhanovskii S. A., Tsorin I. B., Kolik L. G., Stolyaruk V. N., Vititnova M. B. [et al.]. Translation model of alcoholic cardiomyopathy. Molekulyarnaya medicina. – Molecular medicine. 2015;3:40-47. (In Russ.).
11. Миронов А. Н. Руководство по проведению доклинических исследований лекарственных средств. Часть 1. Москва: Гриф и К, 2012. [Mironov A. N. Rukovodstvo po provedeniyu doklinicheskih issledovanij lekarstvennyh sredstv. Chast’ 1. Moscow: «Grif and K», 2012. (In Russ.)].
12. Chaika A. V., Cheretaev I. V., Khusainov D. R. Methods of experimental preclinical testing of the analgesic action of various factors in laboratory rats and mice. Uchenye zapiski Krymskogo federal’nogo universiteta imeni V. I. Vernadskogo. Biologiya. Himiya. – Scientific notes of the Vernadsky Crimean Federal University. Biology. Chemistry. 2015;1(67):161-171. (In Russ.).
13. Carvalho J. K. F., Pereira-Rufino L. D. S., Panfilio C. E., Silva R. D. A., Céspedes I. C. Effect of chronic alcohol intake on motor functions on the elderly. Neurosci. Lett. 2021;745:135630. https://doi.org/10.1016/j.neulet.2021.135630
14. Sullivan E. V., Zahr N. M., Sassoon S. A., Thompson W. K., Kwon D. [et al.]. The role of aging, drug dependence, and hepatitis C comorbidity in alcoholism cortical compromise. JAMA Psychiatry. 2018;75(5):474-483. https://doi.org/10.1001/jamapsychiatry.2018.0021.
15. Pfefferbaum A., Kwon D., Brumback T., Thompson W. K., Cummins K. [et al.]. Altered brain developmental trajectories in adolescents after initiating drinking. Am. J. Psychiatry. 2018;175(4):370-380. https://doi.org/10.1176/appi.ajp.2017.17040469
16. Liu D., Ke Z., Luo J. Thiamine deficiency and neurodegeneration: the interplay among oxidative stress, endoplasmic reticulum stress, and autophagy. Mol. Neurobiol. 2017;54(7):5440-5448. https://doi.org/10.1007/s12035-016-0079-9
17. Xu H., Liu D., Chen J., Li H., Xu M. [et al.]. Effects of chronic voluntary alcohol drinking on thiamine concentrations, endoplasmic reticulum stress, and oxidative stress in the brain of crossed high alcohol preferring mice. Neurotox. Res. 2019;36(4):777-787. https://doi.org/10.1007/s12640-019-00032-y
18. Roberto M., Varodayan F. P. Synaptic targets: Chronic alcohol actions. Neuropharmacology. 2017;122:85-99. https://doi.org/10.1016/j.neuropharm.2017.01.013
19. Samantaray S., Knaryan V. H., Patel K. S., Mulholland P. J., Becker H. C., Banik N. L. Chronic intermittent ethanol induced axon and myelin degeneration is attenuated by calpain inhibition. Brain Res. 2015;1622:7-21. https://doi.org/10.1016/j.brainres.2015.06.014
20. Tyurenkov I. N., Perfilova V. N., Vasil’eva O. S., Rogachevskii I. V., Penniyaynen V. A. [et al.]. GABA-and NO-ergic modulators control antinociceptive responses. Activitas nerv. super. Rediviva. 2018;60(1):101-108.
21. Rocha P. A., Ferreira A. F. B., Da Silva J. T., Alves A. S., Martins D. O. [et al.]. Effects of selective inhibition of nNOS and iNOS on neuropathic pain in rats. Mol. Cell. Neurosci. 2020;105:103497. https://doi.org/10.1016/j.mcn.2020.103497
22. Sokolova M. G., Lopatina E. V. Study of the effect of RGPU 260 on the growth of neurites in organotypic culture of nervous tissue in the presence of blood serum in patients with type 2 spinal muscular atrophy. Geny i Kletki. – Genes and Cells. 2019;14(S):217- 218. (In Russ.).
23. Potupchik T. V., Veselova O. F., Gatskikh I. V. Pharmacotherapeutic aspects of nootropics use in people with alcohol dependence. Medicinskij alfavit. – Medical alphabet. 2019;2(19):37-41. (In Russ.). https://doi.org/10.33667/2078-5631-2019-2-19(394)-37-41

Keywords: chronic alcohol intoxication, derivatives of neuroactive amino acids, glufimet, mefargin, physical performance, sensorimotor function


Founders:
Stavropol State Medical Academy
Pyatigorsk State Research Institute of Balneotherapeutics
Pyatigorsk State Pharmaceutical Academy