logo
Медицинский вестник
Северного Кавказа
Научно-практический журнал
Зарегистрирован в Федеральной службе
по надзору за соблюдением законодательства
в сфере массовых коммуникаций
и охране культурного наследия
ПИ №ФС77-26521 от 7 декабря 2006 года
ISSN 2073-8137
rus
русский
eng
english

Поиск по сайту




Адрес редакции
355017, Ставрополь, улица Мира, 310.

Телефоны
(8652) 35-25-11, 35-32-29.

E-mail
medvestnik@stgmu.ru

Рейтинг@Mail.ru

Проблемы и перспективы использования оптогенетических технологий в XXI веке

[Обзоры]
Фомочкина Ирина Ивановна; Сорокина Лея Евгеньевна; Петренко Виталина Игоревна; Кучеренко Александр Сергеевич; Халилов С.И. ; Кубышкин Анатолий Владимирович; Субботкин Михаил Владимирович; Куланова Алина Алексеевна;

В XXI веке на пересечении генной инженерии и передовых лазерных технологий развивается новое перспективное научное направление – оптогенетика, в рамках которой разрабатывается обширный арсенал для изучения механизмов функционирования организма, функциональной диагностики и терапии социально значимых заболеваний человечества. В работе представлены современные данные о перспективах использования достижений оптогенетики
для решения широкого круга биомедицинских задач. Обзор содержит описание основных способов доставки, встраивания и контроля экспрессии светочувствительных белков на мембране изучаемых клеток. Дается характеристика физико-технической стороны оптогенетического эксперимента, указываются ключевые преимущества и недостатки различных методик. Описываются основные трудности и нюансы в работе с оптогенетическими технологиями, примеры технических решений для выполнения одновременной оптостимуляции и регистрации клеточной активности.

Скачать

Список литературы:
1. Deisseroth K., Feng G., Majewska A. K., Miesenböck G., Ting A. [et al.] Next-generation optical technologies for illuminating genetically targeted brain circuits. Journal of Neuroscience. 2006;26(41):10380-10386. https://doi.org/10.1523/JNEUROSCI.3863-06.2006
2. Nagel G., Szellas T., Huhn W., Kateriya S., Adeishvili N. [et al.] Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. PNAS. 2003;100(24):13940-13945. https://doi.org/10.1073/pnas.1936192100
3. Boyden E. S., Zhang F., Bamberg E., Nagel G., Deisseroth K. Millisecond-timescale, genetically targeted optical control of neural activity. Nature Neuroscience. 2005;8(9):1263-1268. https://doi.org/10.1038/nn1525
4. Imamura H., Nhat K. P. H., Togawa H., Saito K., Iino R. [et al.] Visualization of ATP levels inside single living cells with fluorescence resonance energy transfer-based genetically encoded indicators. PNAS. 2009;106(37):15651-15656. https://doi.org/10.1073/pnas.0904764106
5. Zaglia T., Di Bona A., Mongillo M. A. Light Wand to Untangle the Myocardial Cell Network. Methods & Protocols. 2019;2(2):34-36. https://doi.org/10.3390/mps2020034
6. Yizhar O., Fenno L., Zhang F., Hegemann P., Diesseroth K. Microbial opsins: a family of single-component tools for optical control of neural activity. Cold Spring Harbor Protocols. 2011;3:102. https://doi.org/10.1101/pdb.top102
7. Sakmar T. P. Structure of rhodopsin and the superfamily of seven-helical receptors: the same and not the same. Current Opinion in Cell Biology. 2002;14(2):189-195. https://doi.org/10.1016/S0955-0674(02)00306-X
8. Shichida Y., Yamashita T. Diversity of visual pigments from the viewpoint of G protein activation – comparison with other G protein-coupled receptors. Photochemical and Photobiological Sciences: Official Journal of the European
Photochemistry Association and the European Society for Photobiology. 2003;2(12):1237-1246. https://doi.org/10.1039/B300434A
9. Adamantidis A. R., Zhang F., de Lecea L., Deisseroth K. Optogenetics: opsins and optical interfaces in neuroscience. Cold Spring Harbor Protocols. 2014;(8):815-822. https://doi.org/10.1101/pdb.top083329
10. Klapoetke N. C., Murata Y., Kim S. S., Pulver S. R., Birdsey B. [et al.] Independent optical excitation of distinct neural populations. Nature Methods. 2014;11(3):338-346. https://doi.org/10.1038/nmeth.2836
11. Glock C., Nagpal J., Gottschalk A. Microbial rhodopsin optogenetic tools: Application for analyses of synaptic transmission and of neuronal network activity in behavior. Methods in molecular biology. 2015;1327:87-103. https://doi.org/10.1007/978-1-4939-2842-2_8
12. Gradinaru V., Thompson K. R., Zhang F., Mogri M., Kay K. [et al.] Targeting and readout strategies for fast optical neural control in vitro and in vivo. Journal of Neuroscience. 2007;27(52):14231-14238. https://doi.org/10.1523/JNEUROSCI.3578-07.2007
13. Lin J. Y. A user’s guide to channelrhodopsin variants: features, limitations and future developments. Experimental physiology. 2011;96(1):19-25, https://doi.org/10.1113/expphysiol.2009.051961
14. Adamantidis A. R., Zhang F., Aravanis A. M., Deisseroth K., de Lecea L. Neural substrates of awakening probed with optogenetic control of hypocretin neurons.
Nature. 2007;450(7168):420-424. https://doi.org/10.1038/nature06310
15. Yizhar O., Fenno L. E., Davidson T. J., Mogri M., Deisseroth K. Optogenetics in neural systems. Neuron. 2011;71(1): 9-34. https://doi.org/10.1016/j.neuron.2011.06.004
16. Zhang F., Wang L. P., Brauner M., Liewald J. F., Kay K. [et al.] Multimodal fast optical interrogation of neural circuitry. Nature. 2007;446(7136):633-639. https://doi.org/10.1038/nature05744
17. Husson S. J., Liewald J. F., Schultheis C., Stirman J. N., Lu H. [et al.] Microbial light-activatable proton pumps as neuronal inhibitors to functionally dissect neuronal networks in C. elegans. PloS One. 2012;7(7):e40937. https://doi.org/10.1371/journal.pone.0040937
18. Han X., Qian X., Bernstein J. G., Zhou H.-H., Franzes G. T. [et al.] Millisecond-Timescale Optical Control of Neural Dynamics in the Nonhuman Primate Brain. Neuron. 2009;62(2):191-198. https://doi.org/10.1016/j.neuron.2009.03.011
19. Govorunova E. G., Koppel L. A. The road to optogenetics: microbial rhodopsins. Biochemistry (Mosc). 2016;81(9):928-940. https://doi.org/10.1134/S0006297916090029
20. Airan R. D., Thompson K. R., Fenno L. E. Temporally precise in vivo control of intracellular signalling. Nature. 2009;458:1025-1029. https://doi.org/10.1038/nature07926
21. Witten I. B., Steinberg E. E., Lee S. Y., Davidson T. J., Zalocusky K. [et al.] Recombinase-Driver Rat Lines: Tools, Techniques, and Optogenetic Application to Dopamine-Mediated Reinforcement. Neuron. 2011;72(5):721-733. https://doi.org/10.1016/j.neuron.2011.10.028
22. Madisen L., Mao T., Koch H., Zhuo J.-M., Berenyi A. [et al.] A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing. Nature Neuroscience. 2012;15(5):793–802. https://doi.org/10.1038/nn.3078
23. Carter M. E., de Lecea L. Optogenetic investigation of neural circuits in vivo. Trends in molecular medicine. 2011;17(4):197–206. https://doi.org/10.1016/j.molmed.2010.12.005
24. Sizemore R. J., Seeger-Armbruster S., Hughes S. M., ParrBrownlie L. C. Viral vector-based tools advance knowledge of basal ganglia anatomy and physiology.
Journal of Neurophysiology. 2016;115(4):2124-2146. https://doi.org/10.1152/jn.01131.2015
25. Masamizu Y., Okada T., Kawasaki K., Ishibashi H., Yuasa S. [et al.] Local and retrograde gene transfer into primate neuronal pathways via adeno-associated virus
serotype 8 and 9. Neuroscience. 2011;193:249-258. https://doi.org/10.1016/j.neuroscience.2011.06.080
26. Tervo D. G. R., Hwang B.-Y., Viswanathan S., Gaj T., Lavzin M. [et al.] Variant Permits Efficient Retrograde Access to Projection Neurons. Neuron. 2016;92(2):372-382. https://doi.org/10.1016/j.neuron.2016.09.021
27. Kühn R., Torres R. M. Cre/loxP Recombination system and gene targeting. Methods in molecular biology. 2002;180:175-204. https://doi.org/10.1385/1-59259-178-7:175
28. Dittgen T., Nimmerjahn A., Komai S., Licznerski P., Waters J. [et al.] Lentivirus-based genetic manipulations of cortical neurons and their optical and electrophysiological monitoring in vivo. PNAS. 2004;101(52):18206-18211. https://doi.org/10.1073/pnas.0407976101
29. Kim J. Y., Ash R. T., Ceballos-Diaz C., Levites Y., Golde T. E. [et al.] Viral transduction of the neonatal brain delivers controllable genetic mosaicism for visualising and manipulating neuronal circuits in vivo. The European journal of
neuroscience. 2013;37(8):1203-1220. https://doi.org/10.1111/ejn.12126
30. Arenkiel B. R., Peca J., Davison I. G. In vivo light-induced activation of neural circuitry in transgenic mice expressing channelrhodopsin-2. Neuron. 2007;54(2):205-218. https://doi.org/10.1016/j.neuron.2007.03.005
31. Zeng H., Madisen L. Mouse transgenic approaches in optogenetics. Progress in brain research. 2012;196:193-213. https://doi.org/10.1016/B978-0-444-59426-6.00010-0
32. Park J. E., Silva A. C. Generation of genetically engineered non-human primate models of brain function and neurological disorders. American journal of primatology. 2019;81(2):e22931. https://doi.org/10.1002/ajp.22931
33. Bitzenhofer S. H., Ahlbeck J., Wolff A. Layer-specific optogenetic activation of pyramidal neurons causes beta-gamma entrainment of neonatal networks. Nature communications. 2017;8:14563. https://doi.org/10.1038/ncomms14563
34. Warden M. R., Cardin J. A., Deisseroth K. Optical neural interfaces. Annual Review of Biomedical Engineering. 2014;16:103-129. https://doi.org/10.1146/annurev-bioeng-071813-104733
35. Bartic C., Battaglia F. P., Wang L., Nguyen T. T., Cabral H. [et al.] A multichannel recording system with optical stimulation for closed-loop optogenetic experiments. Methods in Molecular Biology. 2016;1408:333-344. https://doi.org/10.1007/978-1-4939-3512-3_23
36. Aravanis A. M., Wang L.-P., Zhang F., Meltzer L. A., Mogri M. Z. [et al.] An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology. Journal of Neural Engineering. 2007;4(3):43-56. https://doi.org/10.1088/1741-2560/4/3/S02
37. Kwon K. Y., Lee H.-M., Ghovanloo M., Weber A., Li W. A wireless slanted optrode array with integrated micro leds for optogenetics. In 2014 IEEE27th International conference on micro electro mechanical systems (MEMS). 2014. https://doi.org/10.1109/memsys.2014.6765765
38. Shin Y., Yoo M., Kim H.-S., Nam S.-K., Kim H.-I. [et al.] Characterization of fiber-optic light delivery and light-induced temperature changes in a rodent brain for precise optogenetic neuromodulation. Biomedical Optics Express. 2016;7(11):4450-4471. https://doi.org/10.1364/OL.37.004841
39. Cardin J. A., Carlén M., Meletis K., Knoblich U., Zhang F. [et al.] Targeted optogenetic stimulation and recording of neurons in vivo using cell-type-specific expression of Channelrhodopsin-2. Nature Protocols. 2010;5(2):247-254, https://doi.org/10.1038/nprot.2009.228
40. Wu F., Stark E., Im M., Cho I. J., Yoon E. S. [et al.] An implantable neural probe with monolithically integrated dielectric waveguide and recording electrodes for optogenetics applications. Journal of Neural Engineering. 2013;10(5):056012.
https://doi.org/10.1088/1741-2560/10/5/056012
41. Royer S., Zemelman B. V., Barbic M., Losonczy A., Buzsáki G. [et al.] Multi-array silicon probes with integrated optical fibers: light assisted perturbation and recording of local neural circuits in the behaving animal. The European Journal
of Neuroscience. 2010;31(12):2279-2291. https://doi.org/10.1111/j.1460-9568.2010.07250.x
42. Abaya T. V. F., Blair S., Tathireddy P., Rieth L., Solzbacher F. A 3D glass optrode array for optical neural stimulation. Biomedical Optics Express. 2012;3(12):3087-3104. https://doi.org/10.1364/BOE.3.003087
43. Pisanello F., Sileo L., De Vittorio M. Micro- and Nano-technologies for Optical Neural Interfaces. Frontiers in Neuroscience. 2016;10:70. https://doi.org/10.3389/fnins.2016.00070
44. Airan R. D., Thompson K. R., Fenno L. E., Bernstein H., Deisseroth K. Temporally precise in vivo control of intracellular signalling. Nature. 2009;458(7241):1025-1029. ttps://doi.org/10.1038/nature07926
45. Kastanenka K. V., Calvo-Rodriguez M., Hou S. S. Frequency-dependent exacerbation of Alzheimer’s disease neuropathophysiology. Scientific reports. 2019;9(1):8964. https://doi.org/10.1038/s41598-019-44964-z
46. Chen Y., Xiong M., Zhang S. C. Illuminating Parkinson’s therapy with optogenetics. Nature Biotechnology. 2015;33(2):149-150. https://doi.org/10.1038/nbt.3140
47. Krook-Magnuson E., Armstrong C., Oijala M., Soltesz I. On-demand optogenetic control of spontaneous seizures in temporal lobe epilepsy. Nature communications. 2013;4:1376. https://doi.org/10.1038/ncomms2376
48. Touriño C., Eban-Rothschild A., de Lecea L. Optogenetics in psychiatric diseases. Current opinion in neurobiology. 2013;23(3):430-435. https://doi.org/10.1016/j.conb.2013.03.007
49. Deisseroth K. Optogenetics and psychiatry: applications, challenges, and opportunities. Biological psychiatry. 2012;71(12):1030-2. https://doi.org/10.1016/j.biopsych.2011.12.021
50. Tye K. M., Mirzabekov J. J., Warden M. R. Dopamine neurons modulate neural encoding and expression of depression-related behaviour. Nature. 2013; 493(7433): 537–541. https://doi.org/10.1038/nature11740
51. Henriksen B. S., Marc R. E., Bernstein P. S. Optogenetics for retinal disorders. Journal of ophthalmic and vision research. 2014;9(3):374-38, https://doi.org/10.4103/2008-322X.143379
52. Berry M. H., Holt A., Salari A. Restoration of high-sensitivity and adapting vision with a cone opsin. Nature communications. 2019;10(1):1221. https://doi.org/10.1038/s41467-019-09124-x
53. Ganjawala T. H., Lu Q., Fenner M. D., Abrams G. W., Pan Z. H. Improved CoChR Variants Restore Visual Acuity and Contrast Sensitivity in a Mouse Model of Blindness under Ambient Light Conditions. Molecular therapy: the journal of the American Society of Gene Therapy. 2019;27(6):1195- 1205. https://doi.org/10.1016/j.ymthe.2019.04.002
54. Berry M. H., Holt A., Salari A. Restoration of high-sensitivity and adapting vision with a cone opsin. Nature communications. 2019;10(1):1221. https://doi.org/10.1038/s41467-019-09124-x
55. Yu L., Zhou L., Cao G. Optogenetic Modulation of Cardiac Sympathetic Nerve Activity to Prevent Ventricular Arrhythmias. Journal of the American College of Cardiology. 2017;70(22):2778-2790. https://doi.org/10.1016/j.jacc.2017.09.1107
56. Majumder R., Feola I., Teplenin A. S., de Vries A. A., Panfilov A. V. [et al.] Optogenetics enables real-time spatiotemporal control over spiral wave dynamics in an excitable cardiac system. Elife. 2018;7:e41076. https://doi.org/10.7554/eLife.41076
57. Cheng Y., Li H., Lei H. Flexible and precise control of cardiac rhythm with blue light. Biochemical and biophysical research communications. 2019;514(3):759-764. https://doi.org/10.1016/j.bbrc.2019.05.035
58. Ye H., Daoud E., Baba M., Peng R. W., Fussenegger M. A synthetic optogenetic transcription device enhances blood-glucose homeostasis in mice. Science. 2011;332(6037):1565-8. https://doi.org/10.1126/science.1203535
59. Shao J., Xue S., Yu G. Smartphone-controlled optogenetically engineered cells enable semiautomatic glucose homeostasis in diabetic mice. Science translational medicine. 2017;9(387):eaal2298. https://doi.org/10.1126/scitranslmed.aal2298
60. Mohanty S. K., Lakshminarayananan V. Optical Techniques in Optogenetics. Journal of modern optics. 2015;62(12):949–970. https://doi.org/10.1080/09500340.2015.1010620
61. Kravitz A. V., Bonci A. Optogenetics, physiology, and emotions. Frontiers in behavioral neuroscience. 2013;7:169. https://doi.org/10.3389/fnbeh.2013.00169.89
62. Packer A. M., Roska B., Häusser M. Targeting neurons and photons for optogenetics. Nature neuroscience. 2013;16(7):805-815. https://doi.org/10.1038/nn.3427

Ключевые слова: оптогенетика, опсины, ионные каналы, оптоволоконные системы, фотостимуляция


Учредители:
Ставропольская государственная медицинская академия
Государственный научно-исследовательский институт курортологии
Пятигорская государственная фармацевтическая академия