Site search
Correspondence address
310 Mira Street, Stavropol, Russia, 355017
Tel
+7 865 2352511, +7 865 2353229.
E-mail
medvestnik@stgmu.ru
The journal is included into The list of leading scientific periodicals.
The journal is included into VINITI database and is registered in Electronic scientific library.
The journal is indexed by SCOPUS, Ulrich's International Periodicals Directory.
[Original research] [Oncology]
Lyudmila Viktorovna Spirina; Irina Vladimirovna Kovaleva; Svetlana Yurievna Chizhevskaya; Aziyana Buyanovna Dospan; Anastasia Vladimirovna Chebodaeva; Ekaterina Evgenievna Simonova; Irina Viktorovna Kondakova; Evgeniy Lkhamatsyrenovich Choinzonov;
In the study investigation the association of clinical and morphological parameters of papillary thyroid cancer (PTC) with miR-125b expression in tumor tissue and the risk of recurrence according to the American Thyroid Association (ATA) scale. The study included 67 patients with PTC and 36 with benign pathology of the thyroid gland. Bioinformatic analysis was carried out in the databases HumanTargetScan (ver. 8.0) and miRTarBase (ver. 9.0). The expression level of hsa-miR-125b was measured using the real-time PCR. It was revealed that the tumor histological subtype, the BRAF V600E mutation, the risk of relapse is associated with the expression of miR-125b. The data obtained indicate the significant role of miR-125b in the formation of the invasive properties of PTC tumor.
References:
1. Jiang S., Huang Y., Li Y., Gu Q., Jiang C. [et al.]. Silencing FOXP2 reverses vemurafenib resistance in BRAF V600E mutant papillary thyroid cancer and melanoma cells. Endocrine. 2023;79(1):86-97. https://doi.org/10.1007/s12020-022-03180-y
2. Kuo C. Y., Jhuang J. Y., Huang W. C., Cheng S. P. Aberrant Expression of Thymosin Beta-4 Correlates With Advanced Disease and BRAF V600E Mutation in Thyroid Cancer. J. Histochem. Cytochem. 2022;70(10):707-716. https://doi.org/10.1369/00221554221138370
3. Bartel D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281-297. https://doi.org/10.1016/s0092-8674(04)00045-5
4. Maqbool R., Ul Hussain M. MicroRNAs and human diseases: diagnostic and therapeutic potential. Cell. Tissue Res. 2014;358(1):1-15. https://doi.org/10.1007/s00441-013-1787-3
5. Peng B., Theng P. Y., Le M. T. N. Essential functions of miR-125b in cancer. Cell. Prolif. 2021;54(2):e12913. https://doi.org/10.1111/cpr.12913
6. Bu Q., You F., Pan G., Yuan Q., Cui T. [et al.]. MiR-125b inhibits anaplastic thyroid cancer cell migration and invasion by targeting PIK3CD. Biomed. Pharmacother. 2017;88:443-448. https://doi.org/10.1016/j.biopha.2016.11.090
7. Zhang G., Zhou S., Yang Q., Liu F. MicroRNA-125b reduces glucose uptake in papillary thyroid carcinoma cells. Oncol. Lett. 2020;20(3):2806-2810. https://doi.org/10.3892/ol.2020.11832
8. Lowery A. J., Miller N., McNeill R. E., Kerin M. J. Micro-RNAs as prognostic indicators and therapeutic targets: potential effect on breast cancer management. Clin. Cancer Res. 2008;14(2):360-365. https://doi.org/10.1158/1078-0432.CCR-07-0992
9. Murphy A. J., Guyre P. M., Pioli P. A. Estradiol suppresses NF-kappa B activation through coordinated regulation of let-7a and miR-125b in primary human macrophages. J. Immunol. 2010;184(9):5029-5037. https://doi.org/10.4049/jimmunol.0903463
10. Ghafouri-Fard S., Shirvani-Farsani Z., Taheri M. The role of microRNAs in the pathogenesis of thyroid cancer. Noncoding RNA Res. 2020;5(3):88-98. https://doi.org/10.1016/j.ncrna.2020.06.001
11. Kovaleva I. V., Spirina L. V., Chizhevskaya S. Yu., Kondakova I. V., Chojnzonov E. L. Expression and content of LC3B protein in papillary thyroid cancer tissue, relationship with clinical and morphological parameters of the tumor. Voprosy Oncologii. – Problems in Oncology. 2022;68(4):439-444. (In Russ.). https://doi.org/10.37469/0507-3758-2022-68-4-439-444
12. Wang S., Wu J., Ren J., Vlantis A. C., Li M. Y. [et al.]. MicroRNA-125b Interacts with Foxp3 to Induce Autophagy in Thyroid Cancer. Mol. Ther. 2018;26(9):2295-2303. https://doi.org/10.1016/j.ymthe.2018.06.015
13. Mandell M. A., Saha B., Thompson T. A. The Tripartite Nexus: Autophagy, Cancer, and Tripartite Motif-Containing Protein Family Members. Front. Pharmacol. 2020;11:308. https://doi.org/10.3389/fphar.2020.00308
14. Sánchez-Sendra B., González-Muñoz J. F., Pérez-Debén S., Monteagudo C. The Prognostic Value of miR-125b, miR-200c and miR-205 in Primary Cutaneous Malignant Melanoma Is Independent of BRAF Mutational Status. Cancers (Basel). 2022;14(6):1532. https://doi.org/10.3390/cancers14061532
15. Spirina L. V., Chizhevskaya S. Yu., Kondakova I. V. Expression of transcription and growth factors and the AKT/m-TOR signaling pathway components in papillary thyroid cancer. Problemy Endokrinologii. – Problems of Endocrinology. 2018;64(4):208-215. (In Russ.). https://doi.org/10.14341/probl9310
Keywords: papillary thyroid cancer, hsa-miR-125b, tumor invasion, BRAF V600E, risk of recurrence