logo
Medical news
of the North Caucasus
Scientific journal
Mass media registration certificate dated December 7, 2006.
Series ПИ #ФС 77-26521.
Federal service for surveillance over non-violation of the legislation in the sphere of mass communications and protection of cultural heritage.
ISSN 2073-8137
rus
русский
eng
english

Site search



Correspondence address
310 Mira Street, Stavropol, Russia, 355017

Tel
+7 865 2352511, +7 865 2353229.

E-mail
medvestnik@stgmu.ru

Dynamics of soluble selectins during of therapy of non-alcoholic fatty liver disease

[Original research] [Internal diseases]
Alexandr Yagoda; Pavel Koroy; Yuliya Alexandrovna  Kravchenko; Vijaya Sarithala;

The levels of E-, P- and L-selectins in blood were studied during therapy in 42 patients with non-alcoholic fatty liver disease (NAFLD). Patients were divided into three groups. In the first group (17 patients), the hepatoprotective agent was combined with pentoxifylline. In the second group (10 patients) combination of hepatoprotective agent and metformin was applied. In the third group (15 patients), only a hepatoprotective agent (Phosphogliv forte) was prescribed. When using both combined therapy regimens, there could be a decrease in the concentration of E- and P-selectins in blood with normalization of P-selectin levels. Monotherapy with Phosphogliv forte reduced plasma levels of E- and P-selectins, which did not reach control values. In cases of biochemical remission of NAFLD (normalization of aspartic and alanine aminotransferases), a decrease in the concentration of E- and P-selectins in blood was noted. At the same time, levels of P-selectin reached normal values. In patients with preservation of increased activity of aspartic or alanine aminotransferases in dynamics of treatment, only parameters of P-selectin decreased. Thus, against the background of NAFLD therapy, there is a positive dynamics of soluble selectins, which is more pronounced in cases of combined treatment regimens.

Download

References:
1. Lazebnik L. B., Golovanova E. V., Turkina S. V. Raikhelson K. L., Okovityy S. V. [et al.] Non-alcoholic fatty liver disease in adults: clinic, diagnostics, treatment. Guidelines for therapists, third version. Experimental and Clinical Gastroenterology. 2021;185(1):4-52. https://doi.org/10.31146/1682-8658-ecg-185-1-4-52
2. Chalasani N., Younossi Z., Lavine J. E., Charlton M., Cusi K. [et al.] The diagnosis and management of nonalcoholic fatty liver disease: practice guidance from the American association for the study of liver diseases. Hepatology. 2018;67(1):328-357. https://doi.org/10.1002/hep.29367
3. Yu Y., Cai J., She Z., Li H. Insights into the epidemiology, pathogenesis, and therapeutics of nonalcoholic fatty liver diseases. Adv. Sci. 2019;6:1801585. https://doi.org/10.1002/advs.201801585
4. Hammoutene A., Rautou P. E. Role of liver sinusoidal endothelial cells in non-alcoholic fatty liver disease. J. Hepatol. 2019;70(6):1278-1291. https://doi.org/10.1016/j.jhep.2019.02.012
5. Komshilova K. A. Abdominal obesity and non-alcoholic fatty liver disease: clinical, laboratory and morphological comparisons: dissertation thesis of the candidate of medical sciences. Moscow, 2015;26.
6. Koroy P. V., Slyadnev S. A., Yagoda A. V. Relationshp of metabolic syndrome with adhesion molecules in nonalcoholic fatty liver disease. Medical News of North Caucasus. 2020;15(1):23-27. https://doi.org/10.14300/mnnc.2020.15004
7. Yagoda A. V., Koroy P. V., Slyadnev S. A. Positive correlation of the level of molecules of superfamily immunoglobulins ICAM-1, VCAM-1 and PECAM-1 with the index of fibrosis in nonalcoholic fatty liver disease. Eksperimental’naya i Klinicheskaya Gastroenterologiya. 2017;138(2):45-51.
8. Bilgir F., Bilgir O., Calan M. Calan O., Yuksel A. The levels of soluble intercellular adhesion molecule, vascular adhesion molecule and se-selectin levels in patients with non-alcoholic fatty liver disease. J. Autacoids Horm. 2015;4(1):108. https://doi.org/10.4172/2161-0479.1000108
9. Zhuravleva L. V., Krivonosova E. M. Impact of lipoic acid and benfotiamine combination therapy on course of non-alcoholic fatty liver disease. Praktikuyuschiy likar. 2014;4:42-47.
10. Yagoda A. V., Koroy P. V., Slyadnev S. A., Kravchenko Yu. A. Therapy of non-alcoholic fatty liver disease: relationship with soluble adhesion molecules. Therapy. 2020;4(38):110-116. (In Russ.). https://doi.org/10.18565/therapy.2020.4.110-116
11. Moradgholi E., Jafari M., Fathei M., Hejazi K. The effect of high-intensity interval training on E-selectin and P-selectin in obese women. Iran. J. Endocrinol. Metab. 2016;18(4):313-321.
12. Saberi-Karimian M., Rezaei M., Ghazizadeh H., NikbakhtJam I., Orooji A. [et al.] Effect of curcumin supplements on serum cell adhesion molecule (CAM) concentrations in obese subjects. Austin J. Obes. Metab. Synd. 2020;4(1):1014.
13. Abd El-Kader S. M., Al-Jiffri O. H. Impact of weight reduction on insulin resistance, adhesive molecules and adipokines dysregulation among obese type 2 diabetic patients. Afri. Health Sci. 2018;18(4):873-883. https://doi.org/10.4314/ahs.v18i4.5
14. Ryan A. S., Ge S., Blumenthal J. B., Serra M. C., Prior S. J. [et al.] Aerobic exercise and weight loss reduce vascular markers of inflammation and improve insulin sensitivity in obese women. J. Am. Geriatr. Soc. 2014;62(4):607-614. https://doi.org/10.1111/jgs.12749
15. Du J., Ma Y. Y., Yu C. H., Li Y. M. Effects of pentoxifylline on nonalcoholic fatty liver disease: a meta-analysis. World J. Gastroenterol. 2014;20(2):569-577. https://doi.org/10.3748/wjg.v20.i2.569
16. Pasarín M., Abraldes J. G., Liguori E., Kok B., La Mura V. [et al.] Intrahepatic vascular changes in non-alcoholic fatty liver disease: potential role of insulin-resistance and endothelial dysfunction. World J. Gastroenterol. 2017; 23(37):6777-6787. https://doi.org/10.3748/wjg.v23.i37.6777
17. Dajani A. I., Popovic B. Essential phospholipids for nonalcoholic fatty liver disease associated with metabolic syndrome: a systematic review and network meta-analysis. World J. Clin. Cases. 2020;8(21):5070-5495. https://doi.org/10.12998/wjcc.v8.i21.5235
18. Drescher H. K., Schippers A., Rosenhain S. Gremse F., Bongiovanni L. [et al.] L-Selectin/CD62L is a key driver of non-alcoholic steatohepatitis in mice and men. Cells. 2020;9:1106. https://doi.org/10.3390/cells9051106
19. Green L. A., Kim C., Gupta S. K., Rajashekhar G., Rehman J. [et al.] Pentoxifylline reduces tumor necrosis factor-a and HIV-induced vascular endothelial activation. AIDS Res. Hum. Retroviruses. 2012;28(10):1207-1215. https://doi.org/10.1089/aid.2011.0385
20. Mohammadpour A. H., Falsoleiman H., Shamsara J., Abadi G. A., Rasooli R. [et al.] Pentoxifylline decreases serum level of adhesion molecules in atherosclerosis patients. Iran. Biomed. J. 2014;18(1):23-27. https://doi.org/10.6091/ibj.1211.2013
21. Kruszelnicka O., Chyrchel B., Golay A., Surdacki A. Differential associations of circulating asymmetric dimethylarginine and cell adhesion molecules with metformin use in patients with type 2 diabetes mellitus and stable coronary artery disease. Amino. Acids. 2015;47(9):1951-1959. https://doi.org/10.1007/s00726-015-1976-3
22. Victor V. M., Rovira-Llopis S., Bañuls C., Diaz-Morales N., Lopez-Domenech S. [et al.] Metformin modulates human leukocyte/endothelial cell interactions and proinflammatory cytokines in polycystic ovary syndrome patients. Atherosclerosis. 2015;242(1):167-173. https://doi.org/10.1016/j.atherosclerosis.2015.07.017
23. Han J., Li Y., Liu X., Zhou T., Sun H. [et al.] Metformin suppresses retinal angiogenesis and inflammation in vitro and in vivo. PLoS ONE. 2018;13(3):e0193031. https://doi.org/10.1371/journal.pone.0193031
24. Kaur R., Kaur M., Singh J. Endothelial dysfunction and platelet hyperactivity in type 2 diabetes mellitus: molecular insights and therapeutic strategies. Cardiovasc. Diabetol. 2018;17:121. https://doi.org/10.1186/s12933-018-0763-3
25. Richard S. A. Exploring the pivotal immunomodulatory and antiinflammatory potentials of glycyrrhizic and glycyrrhetinic acids. Med. Inflam. 2021;2021:6699560. https://doi.org/10.1155/2021/6699560
26. Gao M., Li X., He L., Yang J., Ye X. [et al.] Diammonium glycyrrhizinate mitigates liver injury via inhibiting proliferation of NKT cells and promoting proliferation of tregs. Drug Design Development. Ther. 2019;13:3579-3589. https://doi.org/10.2147/DDDT.S220030
27. Huo X., Sun X., Cao Z. Qiao J., Yang S. [et al.] Optimal ratio of 18α- and 18β-glycyrrhizic acid for preventing alcoholic hepatitis in rats. Exp. Ther. Med. 2019;18(1):172-178. https://doi.org/10.3892/etm.2019.7572
28. Wang Z. H., Hsieh C. H., Liu W. H., Yin M. C. Glycyrrhizic acid attenuated glycativestress in kidney of diabetic mice through enhancing glyoxalase pathway. Mol. Nutr. Food Res. 2014;58(7):1426-1435. https://doi.org/10.1002/mnfr.201300910
29. Xiong H., Xu Y., Tan G., Han Y., Tang Z. [et al.] Glycyrrhizin ameliorates imiquimod-induced psoriasis-like skin lesions in BALB/c mice and inhibits TNF-α-induced ICAM-1 expression via NF-κB/MAPK in HaCaT cells. Cell. Physiol. Biochem. 2015;35(4):1335-1346. https://doi.org/10.1159/000373955
30. Wang Y. M., Du G. Q. Glycyrrhizic acid prevents enteritis through reduction of NF-κB p65 and p38MAPK expression in rat. Mol. Med. Rep. 2016;13(4):3639-3646. https://doi.org/10.3892/mmr.2016.4981

Keywords: non-alcoholic fatty liver disease, treatment, selectins, pentoxifylline, metformin, phosphogliv forte


Founders:
Stavropol State Medical Academy
Pyatigorsk State Research Institute of Balneotherapeutics
Pyatigorsk State Pharmaceutical Academy