logo
Medical news
of the North Caucasus
Scientific journal
Mass media registration certificate dated December 7, 2006.
Series ПИ #ФС 77-26521.
Federal service for surveillance over non-violation of the legislation in the sphere of mass communications and protection of cultural heritage.
ISSN 2073-8137
rus
русский
eng
english

Site search



Correspondence address
310 Mira Street, Stavropol, Russia, 355017

Tel
+7 865 2352511, +7 865 2353229.

E-mail
medvestnik@stgmu.ru

The role of mechanotransduction in the activation of physiological remodeling histione

[Experimental medicine]
Sergey Sirak; Maria Olegovna Didenko; Alla Sirak; Elizaveta Evgenievna Shchetinina; Ekaterina Sergeevna Sirak; Gregory Petrosyan; Margarita Alekseevna Zhuravel; Evgeny Shchetinin;

The article presents the results of a study of the effect of chewing loads on the process of bone remodeling in experimental peri-implantitis in sheep. It was found that in the period of 1–2 months, chewing loads are not able to significantly improve the qualitative characteristics of the regenerate, whereas, from 3 months after the start of the experimental study, the most significant increase in the number of microcirculatory vessels and osteoblastic differentiation cells was noted. The leading role in the activation of the physiological remodeling histione of the jaw bone is played by functional loads for a period of 3 and 7 months, which is manifested in the rate of formation of young reticulofibrous and lamellar bone tissue around the dental implant, which is faster in speed and volume.

Download

References:
1. Kenkre J. S., Bassett J. The bone remodelling cycle. Ann. Clin. Biochem. 2018;55(3):308-327. https://doi.org/10.1177/0004563218759371
2. Chang B., Liu X. Osteon: Structure, Turnover, and Regeneration. Tissue Eng. Part B Rev. 2021. https://doi.org/10.1089/ten.TEB.2020.0322
3. Ransom R. C., Carter A. C., Salhotra A., Leavitt T., Marecic O. [et al.]. Mechanoresponsive stem cells acquire neural crest fate in jaw regeneration. Nature. 2018;563(7732):514-521. https://doi.org/10.1038/s41586-018-0650-9
4. Gruber R. Molecular and cellular basis of bone resorption. Wien. Med. Wochenschr. 2015;165(3-4):48-53. https://doi.org/10.1007/s10354-014-0310-0
5. Glatt V., Evans C. H., Stoddart M. J. Regenerative rehabilitation: The role of mechanotransduction in orthopaedic regenerative medicine. J. Orthop. Res. 2019;37(6):1263-1269. https://doi.org/10.1002/jor.24205
6. Qin L., Liu W., Cao H., Xiao G. Molecular mechanosensors in osteocytes. Bone Research. 2020;8(8):23. https://doi.org/10.1038/s41413-020-0099-y
7. Gould N. R., Torre O. M., Leser J. M., Stains J. P. The cytoskeleton and connected elements in bone cell mechano-transduction. Bone Research. 2021;149(1):115971. https://doi.org/10.1016/j.bone.2021.115971
8. Ceccarelli G., Presta R., Benedetti L., Cusella De Angelis M. G. [et al.]. Emerging perspectives in scaffold for tissue engineering in oral surgery. Stem Cells International. 2017;2017:4585401. https://doi.org/10.1155/2017/4585401
9. Borciani G., Montalbano G., Baldini N., Cerqueni G., Vitale-Brovarone C., Ciapetti G. Co-culture systems of osteoblasts and osteoclasts: Simulating in vitro bone remodeling in regenerative approaches. Acta Biomater. 2020;108:22-45. https://doi.org/10.1016/j.actbio.2020.03.043
10. Entezari A., Swain M. V., Gooding J. J., Roohani I., Li Q. A modular design strategy to integrate mechanotransduction concepts in scaffold-based bone tissue engineering. Acta Biomater. 2020;118:100-112. https://doi.org/10.1016/j.actbio.2020.10.012
11. Monemian Esfahani A., Rosenbohm J., Reddy K., Jin X., Bouzid T. [et al.]. Tissue Regeneration from Mechanical Stretching of Cell-Cell Adhesion. Tissue Eng. Part C Methods. 2019;25(11):631-640. https://doi.org/10.1089/ten.TEC.2019.0098
12. Sirak S. V., Didenko M. O., Sirak A. G., Shchetinina E. E., Sirak E. S. [et al.]. Influence of load on modeling and remodeling of bone tissue in experimental perimplantitis. Medicinskii Vestnik Severnogo Kavkaza. – Medical News of North Caucasus. 2020;15(3):364-368. (In Russ.). https://doi.org/10.14300/mnnc.2020.15086
13. Chim S. M., Tickner J., Chow S. T., Kuek V., Guo B. [et al]. Angiogenic factors in bone local environment. Cytokine Growth Factor Rev. 2013;24(3):297-310. https://doi.org/10.1016/j.cytogfr.2013.03.008
14. Nguyen J. T., Barak M. M. Secondary osteon structural heterogeneity between the cranial and caudal cortices of the proximal humerus in white-tailed deer. J. Exp. Biol. 2020;223(Pt 11):jeb225482. https://doi.org/10.1242/jeb.225482

Keywords: mechanotransduction, remodeling, histion, bone tissue, jaw


Founders:
Stavropol State Medical Academy
Pyatigorsk State Research Institute of Balneotherapeutics
Pyatigorsk State Pharmaceutical Academy