logo
Medical news
of the North Caucasus
Scientific journal
Mass media registration certificate dated December 7, 2006.
Series ПИ #ФС 77-26521.
Federal service for surveillance over non-violation of the legislation in the sphere of mass communications and protection of cultural heritage.
ISSN 2073-8137
rus
русский
eng
english

Site search



Correspondence address
310 Mira Street, Stavropol, Russia, 355017

Tel
+7 865 2352511, +7 865 2353229.

E-mail
medvestnik@stgmu.ru

Modulation of neuroplasticity using optogenetic stimulation of the dorsal hippocampus

[Experimental medicine]
Irina Ivanovna Fomochkina; Tigran Romaevich Petrosyan; Anatoly Vladimirovich Kubyshkin; Vitalina Igorevna Petrenko; Leia Evgenievna Sorokina; Evgeniya Yurievna Zyablitskaya; Server Iskandarovich Khalilov; Biryukova Elena;

Morphological and functional analysis was performed after optogenetic stimulation of dorsal hippocampal neurons in transgenic mice, performed after stereotactic implementation of a fiber-optic neurointerface. As a result, prolonged blue light stimulation with a wavelength of 470 nm for 8 weeks provided activation of the growth of myelinated processes, an increase in the density of the dorsal hippocampus and cerebral cortex, as well as an improvement in cognitive functions in mice of the experimental group were revealed.

Download

References:
1. Feigin V. L., Nichols E., Alam T., Bannick M. S., Beghi E. [et al.]. Global, regional, and national burden of neurological disorders, 1990–2016: A systematic analysis for the global burden of disease study 2016. Lancet Neurol. 2019;18:459-480. https://doi.org/10.1016/S1474-4422(18)30499-X
2. Sugimoto T., Sakurai T., Ono R., Kimura A., Saji N. [et al.]. Epidemiological and clinical significance of cognitive frailty: A mini review. Ageing Res. Rev. 2018;44:1-7. https://doi.org/10.1016/j.arr.2018.03.002
3. Fu H., Hardy J., Duff K. E. Selective vulnerability in neurodegenerative diseases. Nature Neurosci. 2018;21:1350-1358. https://doi.org/10.1038/s41593-018-0221-2
4. Zhen X., Chu H. Emerging novel approaches to drug research and diagnosis of Parkinson’s disease. Acta Pharmacol. Sin. 2020:41:439-441. https://doi.org/10.1038/s41401-020-0369-7
5. Hussain R., Zubair H., Pursell S., Shahab M. Neurodegenerative Diseases: Regenerative Mechanisms and Novel Therapeutic Approaches. Brain Sci. 2018;8:177. https://doi.org/10.3390/brainsci8090177
6. Boyden E., Zhang F., Bamberg E. Millisecond-timescale, genetically targeted optical control of neural activity. Nature Neurosci. 2005:8:1263-1268. https://doi.org/10.1038/nn1525
7. Pastrana E. Optogenetics: controlling cell function with light. Nature Methods. 2011;8(1):24-25. https://doi.org/10.1038/nmeth.f.323
8. Losi A., Gardner K. H., Möglich A. Blue-Light Receptors for Optogenetics. Chemical Rev. 2018;118(21):10659-10709. https://doi.org/10.1021/acs.chemrev.8b00163
9. Morton A., Murawski C., Deng Y., Keum C., Miles G. B. [et al.]. Photostimulation for In Vitro Optogenetics with High-Power Blue Organic Light-Emitting Diodes. Adv. Biosyst. 2019;3(3):1800290. https://doi.org/10.1002/adbi.201800290
10. Deubner J., Coulon P., Diester I. Optogenetic approaches to study the mammalian brain. Curr. Opin. Structur. Biol. 2019;57:157-163. https://doi.org/10.1016/j.sbi.2019.04.003
11. Park J. E., Silva A. C. Generation of genetically engineered non-human primate models of brain function and neurological disorders. Am. J. Primatol. 2019;81(2):22931. https://doi.org/10.1002/ajp.22931
12. Takata N., Yoshida K., Komaki Y., Xu M., Sakai Y. [et al.]. Optogenetic activation of CA1 pyramidal neurons at the dorsal and ventral hippocampus evokes distinct brain-wide responses revealed by mouse fMRI. PLoS ONE. 2015;10(3):e0121417. https://doi.org/10.1371/journal.pone.0121417
13. Arushanyan E. B., Beier E. V. The hippocampus and cognitive impairments. Neurosci. Behav. Phys. 2008;38(8):751-758. https://doi.org/10.1007/s11055-008-9043-0
14. Korzhevskij D. E., Giljarov A. V. Osnovy gistologicheskoj tehniki. SPb.: SpecLit, 2010. (In Russ.).
15. Ahlgrim N. S., Manns J. R. Optogenetic Stimulation of the Basolateral Amygdala Increased Theta-Modulated Gamma Oscillations in the Hippocampus. Front. Behav. Neurosci. 2019;13:87. https://doi.org/10.3389/fnbeh.2019.00087
16. Weitz A. J., Fang Z., Lee H. J., Fisher R. S., Smith W. C., Choy M. Optogenetic fMRI reveals distinct, frequency-dependent network srecruited by dorsal and intermediate hippocampus stimulations. NeuroImage. 2015;107:229-241. https://doi.org/10.1016/j.neuroimage.2014.10.039
17. Hampson R. E., Song D., Robinson B. S. Developing a hippocampal neural prosthetic to facilitate human memory encoding and recall. J. Neur. Eng. 2018;15(3):036014. https://doi.org/10.1088/1741-2552/aaaed7
18. Inman С. S., Manns J. R., Bijanki K. R., Bass D. I., Hamann S. [et al.]. Direct electrical stimulation of the amygdala enhances declarative memory in humans. PNAS. 2018;115(1):98-103. https://doi.org/10.1073/pnas.1714058114

Keywords: optogenetics, neurointerface, optogenetic stimulation, neuroglia, modulation of neurons, neurodegenerative diseases, stereotaxis, synaptic activity, dorsal hippocampus, neuroplasticity


Founders:
Stavropol State Medical Academy
Pyatigorsk State Research Institute of Balneotherapeutics
Pyatigorsk State Pharmaceutical Academy