logo
Medical news
of the North Caucasus
Scientific journal
Mass media registration certificate dated December 7, 2006.
Series ПИ #ФС 77-26521.
Federal service for surveillance over non-violation of the legislation in the sphere of mass communications and protection of cultural heritage.
ISSN 2073-8137
rus
русский
eng
english

Site search



Correspondence address
310 Mira Street, Stavropol, Russia, 355017

Tel
+7 8652 352524; +7 8652 353229.

Fax
+7 8652 352524.

E-mail
medvestnik@stgmu.ru

Epidemiological and clinical features of «Middle-Urals» variant L138ins in cystic fibr

[Review]
Vera Vladislavovna Shadrina; Stanislav Aleksandrovich Krasovsky; Elena Ivanovna Kondratieva; Evgeny Grigorievich Furman;

The article presents a literature review of L138ins variant in the CFTR gene. L138ins is rare variant in patients with cystic fibrosis (CF) in the world. However, it is a frequent variant in CF patients in different regions of Russia, mostly in the Middle Urals. L138ins variant clinically forms «mild» phenotype in patients with CF. Newborn screening was positive but false-negative cases of neonatal screening were also noted. There have been cases of men infertility and the preserving reproductive function in women. According to the literature data, the residual function of CFTR in the culture of bronchial or nasal epithelial cells was low. A good response was obtained on the CFTR corrector lumacaftor and the combination of lumacaftor/ivacaftor in cell culture from CF patients with an L138ins variant.

Download

References:
1. Online Mendelian Inheritance in Man®. Available at: https://www.omim.org/. Accessed January 12, 2020.
2. Elborn J. S. Cystic fibrosis. Lancet. 2016;388(10059):2519- 2531. https://doi.org/10.1016/S0140-6736(16)00576-6
3. Castells Martínez E. M., González E. C., Tejeda Y., Frómeta A., Martín O. [et al.] An enzyme immunoassay for determining immunoreactive trypsinogen (IRT) in dried blood spots on filter paper using an ultra-microanalytical system. App. Bioche. Biotechnol. 2018;186(4):1034-1046. https://doi.org/10.1007/s12010-018-2785-4
4. Krasovsky S. A., Chernyak A. V., Kashirskaya N. Yu., Kondratyeva E. I., Amelina E. L. [et al.]. Cystic fibrosis in Russia: the establishment of a national registry. Pediatriya. Zhurnal im. G. N. Speranskogo. – Pediatria Journal named after G. N. Speransky. 2014;93(4):44-55. (In Russ.).
5. Sermet-Gaudelus I., Brouard J., Audrézet M. P., Couderc Kohen L., Weiss L. [et al.]. Guidelines for the clinical management and follow-up of infants with inconclusive cystic fibrosis diagnosis through newborn screening. Archives de Pédiatrie. 2017;24(12):e1-e14.
6. Vernooij-van Langen A., Dompeling E., Yntema J. B., Arets B., Tiddens H. [et al.]. Clinical evaluation of the Nanoduct sweat test system in the diagnosis of cystic fibrosis after newborn screening. Eur. J. Pediatr. 2015;174(8):1025- 1034. https://doi.org/10.1007/s00431-015-2501-0
7. Kusova Z. A. Efficiency of the program of newborns screening for cystic fibrosis. Avtoref. dis. ... kand. med. nauk. 2011. (In Russ.).
8. Krasovsky S. A., Amelina E. L., Usacheva M. V., Stepanova A. A., Polyakov A. V. [et al.]. Phenotypic features of adult patients with cystic fibrosis with mutation 3849+10kbC>T. Pulmonologiya. – Pulmonology. 2014;1:71-76. (In Russ.).
9. Macedo A. N., Mathiaparanam S., Brick L., Keenan K., Gonska T. [et al.]. The sweat metabolome of screen-positive cystic fibrosis infants: revealing mechanisms beyond impaired chloride transport. ACS Cent. Sci. 2017;3(8):904- 913. https://doi.org/10.1021/acscentsci.7b00299
10. Wiencek J. R., Lo S. F. Advances in the diagnosis and management of cystic fibrosis in the genomic era. Clin. Chem. 2018;64(6):898-908. https://doi.org/10.1373/clinchem.2017.274670
11. Cabrini G. Innovative therapies for cystic fibrosis: the road from treatment to cure. Mol. Diagn. Ther. 2019;23(2):263- 279. https://doi.org/10.1007/s40291-018-0372-6
12. Dechecchi M. C., Tamanini A., Cabrini G. Molecular basis of cystic fibrosis: from bench to bedside. Ann. Transl. Med. 2018;6(17):334. https://doi.org/10.21037/atm
13. Graeber S. Y., Dopfer C., Naehrlich L., Gyulumyan L., Scheuermann H. [et al.]. Effects of lumacaftor-ivacaftor therapy on cystic fibrosis transmembrane conductance regulator function in phe508del homozygous patients with cystic fibrosis. Am. J. Respir. Crit. Care Med. 2018;197(11):1433- 1442. https://doi.org/10.1164/rccm.201710-1983OC
14. Southern K. W., Patel S., Sinha I. P., Nevitt S. J. Correctors (specific therapies for class II CFTR mutations) for cystic fibrosis. Cochrane Database Syst. Rev. 2018;8:CD010966. https://doi.org/10.1002/14651858.CD010966.pub2
15. Kondratyeva E. I., Petrova N. V., Krasovsky S. A., Polyakov A. V., Sherman V. D. [et al.]. Characterization of patients with variant E92K in the CFTR gene. Actual Problems of Cystic Fibrosis: abstracts of the XIV National Congress. Krasnoyarsk, 2019:26-27. (In Russ.).
16. Golubtsova O. I., Krasovsky S. A., Kozhevnikova S. L., Kapranov N. I. Clinical features of respiratory damage in children with cystic fibrosis in the Chuvash Republic. Voprosy Sovremennoi Pediatrii. – Current Pediatrics. 2012;11(4):54-59. (In Russ.).
17. The clinical and functional translation of CFTR (CFTR2) Available at: https://www.cftr2.org. Accessed January 12, 2020.
18. Sosnay P. R., Siklosi K. R., Van Goor F., Kaniecki K., Yu H. [et al.]. Defining the disease liability of variants in the cystic fibrosis transmembrane conductance regulator gene. Nat. Genet. 2013;45(10):1160-1167.
19. Register of cystic fibrosis patients in Russian Federation. 2017. Edited by Voronkova A., Amelina E., Kashirskaya N., Kondratyeva E., Krasovsky S. [et al.]. Moscow: 2019. Available at: https://elibrary.ru/item.asp?id=40869338. Accessed January 12, 2020. (In Russ.).
20. Shadrina V. V., Merzlova N. B. Osobennosti techeniya mutacii L138ins pri mukoviscidoze u rebenka, prozhivayushhego v Permskom krae. Aktualnye problemy sovremennoj pediatrii: materially rossijskoj nauchno-prakticheskoj konferencii s mezhdunarodnym uchastiem, posvyashhennoj 95-letiyu permskoj pediatricheskoj shkoly. Perm: PGMU, 2017. Available at: https://elibrary.ru/item.asp?id=30704209. Accessed January 12, 2020. (In Russ.).
21. Mukoviscidoz (sovremennye dostizheniya I aktualnye problemy). Metodicheskie rekomendacii pod red. Kapranova N. I., Kashirskoj N. Yu. Moscow, 2005. (In Russ.).
22. Rukavichkin D. V. Kliniko-genotipicheskij polimorfizm mukoviscidoza sredi naseleniya Krasnodarskogo kraya. Avtoref. dis. ... kand. med. nauk. Moscow, 2007. (In Russ.).
23. Petrova N. V. Molekulyarno-geneticheskie i kliniko-genotipicheskie osobennosti mukoviscidoza v rossijskix populyaciyax. Avtoref. dis. ... d-ra biol. nauk. Moscow, 2009. (In Russ.).
24. Ayupova A. X., Karavanova E. A., Mardanova A. K., Axmetova V. L., Bermisheva M. A. [et al.]. Molekulyarno-geneticheskaya diagnostika nasledstvennyx zabolevanij v mediko-geneticheskoj konsul`tacii Respublikanskogo perinatalnogo centra Respubliki Bashkortostan. Aktualnye problemy akusherstva, ginekologii, medicinskoj genetiki: sbornik nauchnyx statej, posvyashhennyx 10-letiyu Respublikanskogo perinatalnogo centra. Ufa, 2013. Available at: https://elibrary.ru/item.asp?id=23026743. Accessed January 12, 2020. (In Russ.).
25. Vasilieva T. G., Shishatskaya S. N., Ni A. N. Certain aspects of respiratory and digestive tract involvement in cystic fibrosis in children. Voprosy sovremennoj pediatrii. – Current Pediatrics. 2013;12(1):162-165. (In Russ.).
26. Chernyx V. B., Stepanova A. A., Beskorovajnaya T. S., Krasovskij S. A., Amelina E. L. [et al.]. Sravnitelnyj analiz chastoty CFTR mutacij I genotipov u rossijskix pacientov s mukoviscidozom I muzhchin s besplodiem. Mukoviscidoz u detej I vzroslyx. Vzglyad v budushhee: sbornik tezisov XI Nacionalnogo kongressa. Moscow, 2013. Available at: https://mukoviscidoz.org/doc/tezis-kongress-11.pdf. Accessed January 12, 2020. (In Russ.).
27. Zinchenko A. V. Trudnyj sluchaj pozdnej diagnosticki legochnoj formy mukoviscidoza 288 reviews u bolnoj r., 35 let, materi dvux zdorovyx detej. Innovacionnye dostizheniya v diagnostike I terapii mukoviscidoza: materialy XIII Nacionalnogo kongressa. Sergiev Posad, 2017. Available at: https://mukoviscidoz.org/doc/kongress/2017/dopolnenie-tezis.pdf Accessed January 12, 2020. (In Russ.).
28. Krasovsky S. A., Kashirskaya N. Yu., Chernyak A. V., Amelina E. L., Petrova N. V. [et al.]. Genetic characterization of cystic fibrosis patients in Russian Federation according to the National Register, 2014. Pulmonologiya. – Pulmonology. 2016;26(2):133-151. (In Russ.). https://doi.org/10.18093/0869-0189-2016-26-2-133-151
29. Petrova N. V., Kashirskaya N. Yu., Vasilyeva T. A., Voronkova N. Yu., Kondratyeva E. I. [et al.]. Phenotypic features in patients with cystic fibrosis with L138ins (p.Leu138dup) mutation. Pediatriya. – Pediatrics. 2017;96(6):64-72. (In Russ.). https://doi.org/10.24110/0031-403X-2017-96-6-64-72
30. Cotton C., Rezaee M., Wilson M., Parsons A., Chmiel J. Identification of an Uncommon CFTR Mutation that Responds to Correctors. Available at: https://www.elibrary.ru/title_about.asp?id=55201Accessed January 12, 2020.
31. Cotton C., Rezaee M., Chmiel J., McBennett K., Roesch E. Primary human nasal epithelial cell air/liquid interface cultures: an in vitro model system for assessing CFTR function. European Cystic Fibrosis Society 16th ECFS Basic Science Conference. Conference Programme& Abstract Book. Dubrovnik, Croatia, 2019. Available at: https:// www.ecfs.eu/sites/default/files/conferences/basic-science-meetings/Final_Asbtract_Web_version.pdf. Accessed January 12, 2020.
32. Han S. T., Rab A., Pellicore M. J., Davis E. F., McCague A. F. [et al.]. Residual function of cystic fibrosis mutants predicts response to small molecule CFTR modulators. JCI Insight. 2018;3(14):e121159. https://doi.org/10.1172/jci.insight.121159
33. Loo T. W., Clarke D. M. Corrector VX-809 promotes interactions between cytoplasmic loop one and the first nucleotide-binding domain of CFTR. Biochem. Pharmacol. 2017;136:24-31. https://doi.org/10.1016/j.bcp.2017.03.020
34. Odera M., Furuta T., Sohma Y., Sakurai M. Molecular dynamics simulation study on the structural instability of the most common cystic fibrosis-associated mutant ΔF508- CFTR. Biophys. Physicobiol. 2018;15:33-44. https://doi.org/10.2142/biophysico.15.0_33
35. Hwang T. C., Yeh J. T., Zhang J., Yu Y. C., Yeh H. I. [et al.]. Structural mechanisms of CFTR function and dysfunction. J. Gen. Physiol. 2018;150(4):539-570. https://doi.org/10.1085/jgp.201711946

Keywords: cystic fibrosis, mild phenotype, CFTR, L138ins


Founders:
Stavropol State Medical Academy
Pyatigorsk State Research Institute of Balneotherapeutics
Pyatigorsk State Pharmaceutical Academy