Medical news
of the North Caucasus
Scientific journal
Mass media registration certificate dated December 7, 2006.
Series ПИ #ФС 77-26521.
Federal service for surveillance over non-violation of the legislation in the sphere of mass communications and protection of cultural heritage.
ISSN 2073-8137

Site search

Correspondence address
310 Mira Street, Stavropol, Russia, 355017

+7 8652 352524; +7 8652 353229.

+7 8652 352524.


Cystic fibrosis-related diabete

Roza Atanesyan; Elena Ivanovna Kondratieva; Natalia Anatolyevna Krylova; Leonid Klimov; Svetlana Dolbnya;

Cystic fibrosis (CF) is a common inherited multi-system disease that has now evolved from a fatal childhood disease to a chronic pathology in adults. Increasing the life expectancy of patients with CF requires special guidance in the prevention, timely diagnosis and treatment of complications. One of the most frequent complications of CF is diabetes mellitus. Now the role of carbohydrate metabolism disorders in the prognosis and treatment of CF has been demonstrated.


1. Cystic Fibrosis Foundation. 2018 Patient Registry Annual Data Report. Available at: https://www.cff.org/Research/Researcher-Resources/Patient-Registry/2018-Patient-Registry-Annual-Data-Report.pdf. Accessed January 22, 2020.
2. Cystic Fibrosis Foundation. 2017 Patient Registry Annual Data Report. Available at: https://www.cff.org/Research/%20Researcher-Resources/Patient-Registry/2017-PatientRegistry-Annual-Data-Report/ Accessed January 22, 2020.
3. Döring G., Hoiby N. Consensus Study Group. Early intervention and prevention of lung disease in cystic fibrosis: a European consensus. J. Cyst. Fibros. 2004;3(2):67-91. https://doi.org/10.1016/j.jcf.2004.03.008
4. Rana M., Munns C. F., Selvadurai H. C. Increased detection of cystic-fibrosis-related diabetes in Australia. Arch. Dis. Child. 2011;96:823-826. https://doi.org/10.1136/adc.2010.208652
5. Kern A. S., Prestridge A. L. Improving screening for cystic fibrosis-related diabetes at a pediatric cystic fibrosis program. Pediatrics. 2013;132(2):512-518. https://doi.org/10.1542/peds.2012-4029
6. Scheuing N., Holl R. W., Dockter G., Fink K., Junge S. [et al.]. Diabetes in cystic fibrosis: multicenter screening results based on current guidelines. PLoS One. 2013;8(12):e81545:1-9. https://doi.org/10.1371/journal.pone.0081545
7. Moran A., Becker D., Casella S. J. [et al.]. Epidemiology, pathophysiology, and prognostic implications of cystic fibrosis-related diabetes: a technical review. Diabetes Care. 2010;33(12):2677-2683. https://doi.org/10.2337/dc10-1279
8. Chan C. L., Vigers T., Pyle L. Continuous glucose monitoring abnormalities in cystic fibrosis youth correlate with pulmonary function decline. J. Cyst. Fibros. 2018;17(6):783- 790. https://doi.org/10.1016/j.jcf.2018.03.008
9. Ode K. L., Frohnert B., Laguna T. Oral glucose tolerance testing in children with cystic fibrosis. Pediatr Diabetes. 2010;11(7):487-492. https://doi.org/10.1111/j.1399-5448.2009.00632.x
10. Hart N. J., Aramandla R., Poffenberger G. Cystic fibrosis-related diabetes is caused by islet loss and inflammation. JCI Insight. 2018;3(8):e98240. https://doi.org/10.1172/jci.insight.98240
11. Sheikh S., Gudipaty L., De Leon D. D. Reduced β-Cell Secretory Capacity in Pancreatic-Insufficient, but Not Pancreatic-Sufficient, Cystic Fibrosis Despite Normal Glucose Tolerance. Diabetes. 2017;66(1):134-144. https://doi.org/10.2337/db16-0394
12. Shwachman H., Leubner H. Mucoviscidosis. Advan. Pediat. 1955;7:249-323.
13. Moran A., Dunitz J., Nathan B. Cystic fibrosis-related diabetes: current trends in prevalence, incidence, and mortality. Diabetes Care. 2009;32(9):1626-1631. https://doi.org/10.2337/dc09-0586
14. Colomba J., Boudreau V., Lehoux-Dubois C. The main mechanism associated with progression of glucose intolerance in older patients with cystic fibrosis is insulin resistance and not reduced insulin secretion capacity. J. Cyst. Fibros. 2019;18(4):551-556. https://doi.org/10.1016/j.jcf.2019.01.009
15. National Consensus «Cystic Fibrosis: Definition, Diagnostic Criteria, Therapy». Coordinators: Kondratyeva E. I., Kashirskaya N. Yu., Kapranov N. I. (2016). (In Russ.).
16. Yi Y., Norris A. W., Wang K. Abnormal Glucose Tolerance in Infants and Young Children with Cystic Fibrosis. Am. J. Respir. Crit. Care Med. 2016;194(8):924-925. https://doi.org/10.1164/rccm.201608-1579ed
17. Leclercq A., Gauthier B., Rosner V. Early assessment of glucose abnormalities during continuous glucose monitoring associated with lung function impairment in cystic fibrosis patients. J. Cyst. Fibros. 2014;13(4):478-484. https://doi.org/10.1016/j.jcf.2013.11.005
18. Zorrón Mei Hsia Pu M., Gonçalves A. C., Minnicucci W. J. [et al.]. Continuous glucose monitoring to evaluate glycaemic abnormalities in cystic fibrosis. Arch. Dis. Child. 2018;103:592-596.
19. Clemente León M., Bilbao Gassó L., Moreno-Galdó A. Oral glucose tolerance test and continuous glucose monitoring to assess diabetes development in cystic fibrosis patients. Endocrinol. Diabetes. Nutr. 2018;65(1):45-51. https://doi.org/10.1016/j.endinu.2017.08.008
20. Colombo C., Alicandro G., Gambazza S. Ventilation inhomogeneity is associated with OGTT-derived insulin secretory defects in cystic fibrosis. Pediatr. Pulmonol. 2019;54(2):141-149. https://doi.org/10.1002/ppul.24212
21. The register of patients with cystic fibrosis in the Russian Federation. 2017 year. Ed. by Amelina E. L., Kashirsky N. Yu., Kondratyeva E. I., Krasovsky S. A., Starinova M. A. [et al.]. M.: MEDPRAKTIKA-M, 2020. (In Russ.).
22. Samoilenko V. A., Krasovsky S. A., Marchenkov Ya. V., Chikina S. Yu., Babadzhanova G. Yu. [et al.]. Clinical features of the course of cystic fibrosis in adult patients with impaired carbohydrate metabolism. Therapeutic Archive. 2013;85(3):32-37. (In Russ.).
23. Terliesner N., Vogel M., Steighardt A., Gausche R., Henn C. [et al.]. Cystic-fibrosis related-diabetes (CFRD) is preceded by and associated with growth failure and deteriorating lung function. J. Pediatr. Endocrinol. Metab. 2017;34-51. https://doi.org/10.1002/ppul.21127
24. Lewis C., Blackman S. M., Nelson A. [et al.]. Diabetes-related mortality in adults with cystic fibrosis. Role of genotype and sex. Am. J. Respir. Crit. Care Med. 2015;191(2):194- 200. https://doi.org/10.1164/rccm.201403-0576OC
25. Bilodeau C., Bardou O., Maillé É. Deleterious impact of hyperglycemia on cystic fibrosis airway ion transport and epithelial repair. J. Cyst. Fibros. 2016;15(1):43-51. https://doi.org/10.1016/j.jcf.2015.04.002
26. Mainbourg S., Philit F., Touzet S. [et al.]. Cystic fibrosis-related diabetes before lung transplantation is associated with lower survival but does not affect long-term renal function. Pediatr. Pulmonol. 2019;54(7):977-983. https://doi.org/10.1002/ppul.24307
27. van Meerkerk G., van de Graff E. A., Kwakkel-van Erp J. M. [et al.]. Diabetes before and after lung transplantation in patients with cystic fibrosis and other lung diseases. Diabet. Med. 2012;29(8):e159-e162. https://doi.org/10.1111/j.1464-5491.2012.03676.x
28. Konrad K., Kapellen T., Lilienthal E. [et al.]. Does β-Cell Autoimmunity Play a Role in Cystic Fibrosis-Related Diabetes? Analysis Based on the German/Austrian Diabetes Patienten Verlaufsdokumentation Registry. Diabetes Care. 2016;39(8):1338-1344. https://doi.org/10.2337/dc16-0020
29. Litvin M. J. Cystic Fibrosis Related Diabetes: a Unique Challenge in Diabetes Care. Missouri Medicine. 2016;113(5):384-389. https://doi.org/10.2337/dc10-2289
30. Moran A., Brunzell C., Cohen R. C. Clinical care guidelines for cystic fibrosis-related diabetes: a position statement of the American Diabetes Association and a clinical practice guideline of the Cystic Fibrosis Foundation, endorsed by the Pediatric Endocrine Society. Diabetes Care. 2010;33(12):2697-2708. https://doi.org/10.2337/dc10-1768
31. Wanda K., O’Neal M., Knowles R. Cystic fibrosis disease modifiers: complex genetics defines the phenotypic diversity in a monogenic disease. Ann. Rev. Genom. Hum. Genet. 2018;19:201-222. https://doi.org/10.1146/annurev-genom-083117-021329
32. Paranjapye A., Ruffin M., Harris A., Corvol H. Genetic Variation in CFTR and Modifier Loci May Modulate Cystic Fibrosis Disease Severity. J. Cyst. Fibros. 2020;1:10-14. https://doi.org/10.1016/j.jcf.2019.11.001
33. Gallati S. Disease-modifying genes and monogenic disorders: experience in cystic fibrosis. Appl. Clin. Genet. 2014;7:133-146. https://doi.org/10.2147/TACG.S18675
34. Saxena R., Gianniny L., Burtt N. [et al.]. Common single nucleotide polymorphisms in TCF7L2 are reproducibly associated with type 2 diabetes and reduce the insulin response to glucose in nondiabetic individuals. Diabetes. 2006;55:2890-2895. https://doi.org/10.2337/db06-0381
35. Freathy R. M., Weedon M. N., Bennett A. [et al.]. Type 2 diabetes TCF7L2 risk genotypes alter birth weight: a study of 24,053 individuals. Am. J. Hum. Genet. 2007;80:1150- 1161. https://doi.org/10.1086/518517
36. Florez J. C., Jablonski K. A., Bayley N. [et al.]. TCF7L2 polymorphisms and progression to diabetes in the Diabetes Prevention Program. N. Engl. J. Med. 2006;355:241- 250. https://doi.org/10.1056/NEJMoa062418
37. Loos R. J., Franks P. W., Francis R. W. [et al.]. TCF7L2 polymorphisms modulate proinsulin levels and beta-cell function in a British Europid population. Diabetes. 2007;56:1943-1947. https://doi.org/ 10.2337/db07-0055
38. Samoilenko V. A., Petrova N. V., Babadzhanova G. Yu., Nagorny A. B., Krasovsky S. A., Chuchalin A. G. Role of the TCF7L2 modifier gene in diabetes in adult patients with cystic fibrosis. Pulmonologiya. – Pulmonology. 2014;(2):33-39. (In Russ.). https://doi.org/10.18093/0869-0189-2014-0-2-33-39
39. Zhi-qiu Huang, Yao-qi Liao, Run-ze Huang, Jin-peng Chen &Hui-lin Sun. Possible role of TCF7L2 in the pathogenesis of type 2 diabetes mellitus. Biotechnology & Biotechnological Equipment. 2018;32(4):830-834. https://doi.org/10.1080/13102818.2018.1438211
40. Lyssenko V., Lupi R., Marchetti P. [et al.]. Mechanisms by which common variants in the TCF7L2 gene increase risk of type 2 diabetes. J. Clin. Invest. 2007;117:2155-2163. https://doi.org/10.1172/JCI30706 41. Moran A., Pillay K., Becker D., Granados A., Hameed S. [et al.]. ISPAD Clinical Practice Consensus Guidelines 2018: Management of cystic fibrosis-related diabetes in children and adolescents. Pediatr Diabetes. 2018;27:64-74. https://doi.org/10.1111/pedi.12732
42. Moran A., Brunzell C., Cohen R. C. Clinical care guidelines for cystic fibrosis-related diabetes: a position statement of the American Diabetes Association and a clinical practice guideline of the Cystic Fibrosis Foundation, endorsed by the Pediatric Endocrine Society. Diabetes Care. 2010;33(12):2697-2708. https://doi.org/10.2337/dc10-1768
43. Moran A., Pillay K., Becker D. J., Acerini C. L. Management of cystic fibrosis-related diabetes in children and adolescents. Pediatric Diabetes. 2014;15(20):65-76. https://doi.org/10.1111/pedi.12178
44. Brodsky J., Dougherty S., Ramkrishna M., Rubenstein R. C., Kelly A. Elevation of 1-hour plasma glucose during oral glucose tolerance testing is associated with worse pulmonary function in cystic fibrosis. Diabetes Care. 2011;34:292-295. https://doi.org/10.2337/dc10-1604
45. Sheikh S. I., Putt M. E., Forde K. A., Rubenstein R. C., Kelly A. Elevation of one hour plasma glucose during ora. Glucose tolerance testing. Pediatr. Pulmonol. 2015;50:963- 969. https://doi.org/10.1002/ppul.23237
46. Schmid K., Fink K., Holl R. W. Predictors for future cystic fibrosis-related diabetes by oral glucose tolerance test. J. Cyst. Fibros. 2014;13(1):80-85. https://doi.org/10.1016/j.jcf.2013.06.001
47. Hardin D. S., Rice J., Rice M., Rosenblatt R. Use of the insulin pump in treat cystic fibrosis related diabetes. J. Cyst. Fibros. 2009;8(3):174-178. https://doi.org/10.1016/j.jcf.2008.12.001
48. Balzer B. W., Graham C. L., Craig M. E. [et al.]. Low glycaemic index dietary interventions in youth with cystic fibrosis: a systematic review and discussion of the clinical implications. Nutrients. 2012;4(4):286-296. https://doi.org/10.3390/nu4040286
49. Onady G. M., Stolfi A. Insulin and oral agents for managing cystic fibrosis-related diabetes. Cochrane Database Syst. Rev. 2013;2013(7):1-23. https://doi.org/10.1002/14651858.CD004730.pub3
50. Ballmann M., Hubert D., Assael B. M. Repaglinide versus insulin for newly diagnosed diabetes in patients with cystic fibrosis: a multicentre, open-label, randomised trial. Lancet Diabetes Endocrinol. 2018;6(2):114-121. https://doi.org/10.1016/S2213-8587(17)30400-X
51. Moran A. Is it time to treat CFRD with oral diabetes agents? Lancet Diabetes Endocrinol. 2018;6 (2):85-87. https://doi.org/10.1016/S2213-8587
52. Ode K. L., Chanc C. L., Granados A., Moheet A., Moran A., Brennan A. L. Cystic fibrosis related diabetes: Medical management. J. Cyst. Fibros. 2019;18:10-18. https://doi.org/10.1016/j.jcf.2019.08.003
53. Kelly A., De Leon D. D., Sheikh S., Camburn D., Kubrak C. [et al.]. Islet Hormone and Incretin Secretion in Cystic Fibrosis after Four Months of Ivacaftor Therapy. Am. J. Respir. Crit. Care Med. 2019;199(3):342. https://doi.org/10.1164/rccm.201806-1018OC

Keywords: diabetes mellitus, life expectancy, glucose tolerance test, insulin therapy

Stavropol State Medical Academy
Pyatigorsk State Research Institute of Balneotherapeutics
Pyatigorsk State Pharmaceutical Academy