logo
Medical news
of the North Caucasus
Scientific journal
Mass media registration certificate dated December 7, 2006.
Series ПИ #ФС 77-26521.
Federal service for surveillance over non-violation of the legislation in the sphere of mass communications and protection of cultural heritage.
ISSN 2073-8137
rus
русский
eng
english

Site search



Correspondence address
310 Mira Street, Stavropol, Russia, 355017

Tel
+7 8652 352524; +7 8652 353229.

Fax
+7 8652 352524.

E-mail
medvestnik@stgmu.ru

Extraction of texture features from medical images: osteoarthritis cases review

[Review]
Mukti Akter;

Texture features of osteoarthritis quantitatively represent patterns of interest in image analysis and interpretation in medicine. Texture features can widely vary so that the analysis can lead to interpretation errors and undesirable consequences. In such cases, finding of informative features becomes problematic. In medical imaging, the texture features of bones were useful for representing variations in patterns of pixel intensity, which were correlated with pathological changes. In this paper, we review existing approaches to extracting the texture features and conclude on usability, including machine learning.

Download

References:
1. Depeursinge A., Al-Kadi O., Mitchell J. Biomedical Texture Analysis: Fundamentals, Tools and Challenges. Elsevier Science & Technology Books. 2017.
2. Haralick R. M., Shanmugam K., Dinstein I. Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics SMC. 1973;3(6):610-621.
3. Ghosh A., Sarkar A., Ashour A. S., Balas-Timar D., Dey N. Grid color moment features in glaucoma classification. International Journal of Advanced Computer Science and Applications. 2015;6(9):99-107.
4. Shamir L., Ling S. M., Scott W. W. Jr. Knee x-ray image analysis method for automated detection of osteoarthritis. IEEE Trans. Biomed. Eng. 2009;56(2):407-415.
5. Shamir L. A Computer analysis method for correlating knee X-ray with continuous indicators. International Journal of Computer Assisted Radiology & Surgery (CARS). 2011;6:699-704.
6. Shamir L., Ling S. M., Jr. W. W. S., Bos A., Orlov N. [etмal.] Knee x-ray image analysis method for automated detection of osteoarthritis. IEEE Transactions on Biomedical Engineering. 2009;56(2):407-415.
7. Thomson J. Algorithm for automatic analysis of radiographs of the knee with application in diagnosis and monitoring of osteoarthritis. Doctor of Philosophy. University of Manchester. 2016.
8. He D., Wang L., Guibert J. Texture feature extraction. Pattern Recognition Letters. 2003;6(4):269-273.
9. Li Z., Shi K., Dey N., Ashour A. S., Wang D. Rule-based backpropagation neural networks for various precision rough set presented kansei knowledge prediction: a case study on shoe product form features extraction. Neural Computing and Applications. 2017;28(3):613-630.
10. Xiao J., He C. Dynamic Classifier Ensemble Selection Based on GMDH, Computational Sciences and Optimization. International Joint Conference. 2009:731.
11. Li Z., Shi K., Dey N., Ashour A. S., Wang D. Rule-based backpropagation neural networks for various precision rough set presented kansei knowledge prediction: a case study on shoe product form features extraction. Neural Computing and Applications. 2017;28(3):613-630.
12. Wang D., He T., Li Z., Cao L., Dey N. Image feature-based effective retrieval employing improved parameter and structure identification of adaptive neuro-fuzzy inference system. Neural Computing and Applications. 2016;29(4):1087-1102.
13. Haralick R. M., Shanmugam K., Dinstein I. Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics SMC. 1973;3(6):610-621.
14. Paiva A. R. C., Tasdizen T. Detection of Salient Image Points Using Principal Subspace Manifold Structure. Pattern Recognition (ICPR). 20th International Conference. 2010:1389.
15. Dozono H., Nakakuni M. An integration method of multi-modal texture method using supervised pareto learning. Neural Networks. IJCNN. IEEE International Joint Conference. 2008:602.
16. Yu J., Wang M., Tao D. Semisupervised Multiview Distance Metric Learning for Cartoon Synthesis. Image Processing. IEEE Transactions. 2012;21(11):4636-4648.
17. Breiman L. Random forests. Machine Learning. 2001; 45(1):5-32.
18. Boniatis I., Costaridou L., Cavouras D., Kalatzis I., Panagiotopoulos. Osteoarthritis severity of the hip by computeraided grading of radiographic images. Medical and Biological Engineering and Computing. 2006;44(9):793-803.
19. Schetinin V., Jakaite L., Krzanowski W. Prediction of survival probabilities with Bayesian Decision Trees. Expert Systems with Applications. 2013;40(14):5466-5476.
20. Jakaite L., Schetinin V., Maple C., Schult J. Bayesian decision trees for EEG assessment of newborn brain maturity. The 10th Annual Workshop on Computational Intelligence UKCI. 2010. https://doi.org/10.1109/UKCI.2010.5625584
21. Jakaite L., Schetinin V., Schult J. Feature extraction from electroencephalograms for Bayesian assessment of newborn brain maturity. In: 24th International Symposium on Computer-Based Medical Systems (CBMS). 2011:1-6. https://doi.org/10.1109/CBMS.2011.5999109
22. Jakaite L., Schetinin V., Maple C. Bayesian assessment of newborn brain maturity from two-channel sleep electroencephalograms. Computational and Mathematical Methods in Medicine. 2012:1-7. https://doi.org/10.1155/2012/629654
23. Schetinin V., Jakaite L., Jakaitis J., Krzanowski W. Bayesian decision trees for predicting survival of patients: A study on the US national trauma data bank. Computer Methods and Programs in Biomedicine. 2013;111(3):602-612. https://doi.org/10.1016/j.cmpb.2013.05.015
24. Madala H., Ivakhnenko A. G. Inductive Learning Algorithms for Complex Systems Modeling. CRC Press Inc.: Boca Raton. 1994.
25. Muller J. A., Lemke F. Self-Organizing Data Mining. Extracting Knowledge from Data. Trafford Publishing, Canada. 2003.
26. Miller J. A., Lemke F., Ivakhnenko A. G. GMDH algorithms for complex systems modeling. Math and Computer Modeling of Dynamical Systems. 1998;4:275-315.
27. Schetinin V., Schult J. A neural-network technique to learn concepts from electroencephalograms. Theory in Biosciences. 2005;124(1):41-45. https://doi.org/10.1016/j.thbio.2005.05.004
28. Qazi A. A., Folkesson J., Pettersen P. C., Karsdal M. A., Christiansen C., Dam E. B. Separation of healthy and early osteoarthritis by automatic quantification of cartilage homogeneity. Osteoarthritis and Cartilage. 2007;15(10):1199-1206.
29. Hanna F. S., Teichtahl A. J., Wluka A. E., Wang Y., Urquhart D. M. [et al.] Women have increased rates of cartilage loss and progression of cartilage defects at the knee than men: a gender study of adults without clinical knee osteoarthritis. Menopause. 2009;19:666-670.
30. Manjunath B. S., Ma W.-Y. Texture Features for Image Retrieval, IBM T.J. Watson Research Center, and Image Database: Search and Retrieval of digital Imagery. 2002:313-344.
31. Umbaugh S. E. Computer Imaging: Digital Image Analysis and Processing, Taylor and Francis Group, 2005.
32. Bouridane A., Tahir M. A., Kurugollu F. Accelerating the Computation of GLCM and Haralick Texture Features on recon gurable Hardware. Int. Conf. on Image Processing. 2004;5:2857-2860.
33. Khotanzad A., Hong Y. H. Invariant image recognition by zernike moments. IEEE Trans. Pattern Anal. Mach. Intell. 1990;12(5):489-497.
34. Teague M. R. Image analysis via the general theory of moments. Journal of the Optical Society of America. 1980;70(8):920-930.
35. Anifah L., Purnama K., Hariadi M., Purnomo M. Automatic Segmentation of Impaired Joint Space Area for Osteoarthritis Knee X-ray Image using Gabor Filter based Morphology Process. The Journal of Technology & Science. 2011;22(3):159-165.
36. Lior S., Ling S., Scott W., Orlov N., Macura T. [et al.] Knee X-ray Image Analysis Method of Osteoarthritis. IEEE Transactions on Biomedical Engineering. 2008;16(6):306-310.
37. Bandyopadhyay S. An Edge Detection Algorithm for Human Knee Osteoarthritis Images. Journal of Global Research in Computer Science. 2011;2(4):484-487.
38. Sharma P., Singh J. A Novel Approach towards X-ray Bone Image Segmentation using Discrete Step Algorithm. International Journal of Emerging Trends & Technology in Computer Science. 2013;2(5):191-195.
39. Kubakaddi S., Urs N. Detection of Knee Osteoarthritis by Measuring the Joint Space Width in Knee X-ray Images. International Journal of Electronics & Communication. 2015;3(4):18-21.
40. Pratiwi D., Santika D., Pardamean B. An Application of Back propagation Artificial Neural Network Method for Measuring the Severity of Osteoarthritis. International Journal of Engineering & Technology. 2011;11(3):110-115.
41. Subromoniam M., Barani S., Rajini V. A non-invasive computer aided diagnosis of osteoarthritis from digital X-ray images. Biomedical Research. 2015;26(4):721-729.
42. Ray C., Sasma K. A New Approach for Clustering of X-ray Images. International Journal of Computer Science Issues. 2010;7(4):334-355.

Keywords: texture features, osteoarthritis, medical imaging, pattern recognition, machine learning


Founders:
Stavropol State Medical Academy
Pyatigorsk State Research Institute of Balneotherapeutics
Pyatigorsk State Pharmaceutical Academy