Medical news
of the North Caucasus
Scientific journal
Mass media registration certificate dated December 7, 2006.
Series ПИ #ФС 77-26521.
Federal service for surveillance over non-violation of the legislation in the sphere of mass communications and protection of cultural heritage.
ISSN 2073-8137

Site search

Correspondence address
310 Mira Street, Stavropol, Russia, 355017

+7 8652 352524; +7 8652 353229.

+7 8652 352524.


Lipid metabolism genes and predisposition to ischemic heart disease

Mikhail Churilin; Stanislav Kononov; Galina Mal; Alexey Polonikov; Victor Lazarenko;

This review deals with the analysis of foreign and domestic literature of recent years on the search for genes involved in the regulation of lipid metabolism and responsible for the development of coronary atherosclerosis.


1. World Health Organization & Candau, Marcolino Gomes. (1966). The work of WHO, 1965: annual report of the Director- General to the World Health Assembly and to the United Nations. World Health Organization.
2. Ridker P., Libby P. Risk factors for atherothrombotic disease. In Zipes D. et al. (eds): Braunwald’s Heart Disease, 7th ed. Philadelphia, Elsevier Saunders, 2005.
3. Watkins H., Farrall M. Genetic susceptibility to coronary artery disease: from promise to progress. Nat. Rev. Genet. 2006;7(3):163-173. https://doi.org/10.1038/nrg1805
4. Zdravkovic S., Wienke A., Pedersen N. L. Heritability of death from coronary heart disease: a 36-year follow-up of 20966 Swedish twins. J. Intern. Med. 2002;252(3):247- 254.
5. Lloyd-Jones D. M., Nam B. H. Parental cardiovascular disease as a risk factor for cardiovascular disease in middle-aged adults: a prospective study of parents and offspring. JAMA.2004;291(18):2204-2211. https://doi.org/10.1001/jama.291.18.2204
6. Lehrman M. A., Schneider W. J. Mutation in LDL receptor: Alu-Alu recombination deletes exons encoding transmembrane and cytoplasmic domains. Science. 1985;227(4683):140-146.
7. Soria L. F., Ludwig E. H., Clarke H. R. Association between a specific apolipoprotein B mutation and familial defective apolipoprotein B-100. Proc. Nat. Acad. Sci. USA.1989;86(2):587-591.
8. Abifadel M., Varret M., Rabes J. P. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat. Genet. 2003;34(2):154-156. https://doi.org/10.1038/ng1161
9. Bush W. S., Moore J. H. Chapter 11: Genome-wide association studies. PLoSComput. Biol. 2012;8(12):e1002822. https://doi.org/10.1371/journal.pcbi.1002822
10. Teslovich T. M., Musunuru K., Smith A. V. Biological, clinical and population relevance of 95 loci for blood lipids. Nature. 2010;466(7307):707-713. https://doi.org/10.1038/nature09270
11. Webb T. R., Erdmann J., Stirrups K. E., Stitziel N. O., Masca N. G. D. [et al.]. Welcome Trust Case Control Consortium; MORGAM Investigators; Myocardial Infarction Genetics and CARDIoGRAM Exome Consortia Investigators. Systematic Evaluation of Pleiotropy Identifies 6 Further Loci Associated With Coronary Artery Disease. J. Am. Coll. Cardiol.2017;69:823-836. https://doi.org/10.1016/j.jacc.2016.11.056
12. Sun X. M., Eden E. R., Tosi I., Neuwirth C. K., Wile D. [et al.]. Evidence for effect of mutant PCSK9 on apolipoprotein B secretion as the cause of unusually severe dominant hypercholesterolaemia. Hum. Mol. Genet. 2005;14:1161– 1169. https://doi.org/10.1093/hmg/ddi128
13. Han D. F., Ma J. H., Hao C. G., Tuerhong Tuerxun, Du L., Zhang X. N. Association and differences in genetic polymorphisms in PCSK9 gene in subjects with lacunar infarction in the Han and Uygur populations of Xinjiang Uygur Autonomous Region of China. Neural. Regen. Res. 2017;12(8):1315-1321. https://doi.org/10.4103/1673-5374.213552
14. Keenan T. E., Rader D. J. Genetics of Lipid Traits and Relationship to Coronary Artery Disease. Curr. Cardiol. Rep. 2013;15(9):10. https://doi.org/10.1007/s11886-013-0396-9
15. Willer C. J., Schmidt E. M., Sengupta S. Discovery and Refinement of Loci Associated with Lipid Levels. Nat. gen.2013;45(11):1274-1283. https://doi.org/10.1038/ng.2797
16. van ‘t Hof F. N., Ruigrok Y. M., Baas A. F. Impact of inherited genetic variants associated with lipid profile, hypertension, and coronary artery disease on the risk of intracranial and abdominal aortic aneurysms. Circ. Cardiovasc. Genet. 2013;6(3):264-270. https://doi.org/10.1161/CIRCGENETICS.113.000022
17. Zhao C., Zhu P., Shen Q., Jin L. Prospective association of a genetic risk score with major adverse cardiovascular events in patients with coronary artery disease. Medicine (Baltimore). 2017;96(51):e9473. https://doi.org/10.1097/MD.0000000000009473
18. Johansen C. T., Hegele R. A. The complex genetic basis of plasma triglycerides. Curr. Atheroscler. Rep. 2012;3:227-234. https://doi.org/10.1007/s11883-012-0243-2
19. Oram J. F., Vaughan A. M. ATP-Binding cassette cholesterol transporters and cardiovascular disease. Circ. Res. 2006;99:1031-1043. https://doi.org/10.1161/01.RES.0000250171.54048.5c
20. Howson J. M. M., Zhao W., Barnes D. R. Fifteen new risk loci for coronary artery disease highlight arterial wall-specific mechanisms. Nat. gen. 2017;49(7):1113-1119. https://doi.org/10.1038/ng.3874
21. Vickers K. C., Rodriguez A. Human Scavenger Receptor Class B Type I Variants, Lipid Traits, and Cardiovascular Disease. Circ. Cardiovasc. Genet.2014;7(6):735-737. https://dx.doi.org/10.1161%2FCIRCGENETICS.114.000929
22. Niemsiri V., Wang X., Pirim D. Impact of Genetic Variants in Human Scavenger Receptor Class B Type I (SCARB1) on Plasma Lipid Traits. Circ. Cardiovasc. Genet. 2014;7(6):838-847. https://doi.org/10.1161/CIRCGENETICS.114.000559
23. Mirmiran P., Esfandiar Z., Hosseini-Esfahani F. Genetic variations of cholesteryl ester transfer protein and diet interactions in relation to lipid profiles and coronary heart disease: a systematic review. Nutrition & Metabolism. 2017;14:77. https://doi.org/10.1186/s12986-017-0231-1
24. Walia G. K., Gupta V., Aggarwal A. Association of Common Genetic Variants with Lipid Traits in the Indian Population. PLoS One. 2014;9(7):e101688. https://doi.org/10.1371/journal.pone.0101688
25. Johansen C. T., Kathiresan S., Hegele R. A. Genetic determinants of plasma triglycerides. J. Lipid. Res.2011;52(2):189-206. https://doi.org/10.1194/jlr.R009720
26. Ligthart S., de Vries P. S., Uitterlinden A. G. Pleiotropy among common genetic loci identified for cardiometabolic disorders and C-reactive protein. PLoS One. 2015;10(3):e0118859. https://doi.org/10.1371/journal.pone.0118859
27. McPherson R., Tybjaerg-Hansen A. Genetics of coronary artery disease. Circ. Res. 2016;19:118(4):564-578. https://doi.org/10.1161/CIRCRESAHA.115.306566
28. Baass A., Dubuc G., Tremblay M., Delvin E. E., O’Loughlin J., Levy E. Plasma PCSK9 is associated with age, sex, and multiple metabolic markers in a population-based sample of children and adolescents. Clin. Chem. 2009;55(9):1637- 1645. https://doi.org/10.1373/clinchem.2009.126987
29. De Castro-Orós I., Solà R., Valls R. M., Brea A., Mozas P. [et al.]. Genetic Variants of LDLR and PCSK9 Associated with Variations in Response to Antihypercholesterolemic Effects of Armolipid Plus with Berberine. PLoS One.
2016;11(3):e0150785. https://doi.org/10.1371/journal.pone.0150785
30. Paththinige C. S., Sirisena N. D., Dissanayake V. Genetic determinants of inherited susceptibility to hypercholesterolemia – a comprehensive literature review. Lipids Health Dis. 2017;16:103. https://doi.org/10.1186/s12944-017-0488-4
31. Polisecki E., Peter I., Simon J. S. [et al.] Genetic variation at the NPC1L1 gene locus, plasma lipoproteins, and heart disease risk in the elderly. J. Lipid. Res.2010;51(5):1201- 1207. https://doi.org/10.1194/jlr.P001172
32. Temel R. E., Tang W., Ma Y., Rudel L. L. Hepatic Niemann-Pick C1-like 1 regulates biliary cholesterol concentration and is a target of ezetimibe. J. Clin. Invest. 2007;117(7):1968-1978. https://doi.org/10.1172/JCI30060
33. Muendlein A., Leiherer A., Saely C. H. Common single nucleotide polymorphisms at the NPC1L1 gene locus significantly predict cardiovascular risk in coronary patients. Atherosclerosis. 2015;242(1):340-345. https://doi.org/10.1016/j.atherosclerosis.2015.07.011
34. Inokuchi J. Physiopathological function of hematoside (GM3 ganglioside). Physic. and Biol. Sciences. 2011;87(4):179- 198. https://doi.org/10.2183/pjab.87.179
35. Song J., Xue C., Preisser J. S. Association of Single Nucleotide Polymorphisms in the ST3GAL4 Gene with VWF Antigen and Factor VIII Activity. PLoS One. 2016;11(9):e0160757. https://doi.org/10.1371/journal.pone.0160757
36. Harrison S. C., Holmes M. V. Genetic association of lipids and lipid drug targets with abdominal aortic aneurysm: a meta-analysis. JAMA Cardiol. 2018;3(1):26-33. https://doi.org/10.1001/jamacardio.2017.4293
37. O’Reilly P. F., Hoggart C. J., Pomyen Y., Calboli F. C., Elliott P. [et al.]. MultiPhen: joint model of multiple phenotypes can increase discovery in GWAS. PLoS One. 2012;7:234861. https://doi.org/10.1371/journal.pone.0034861
38. Li Y., Huang Y., Liang X., Long B., Chen S. [et al.]. Apolipoprotein C-I polymorphism and its association with serum lipid land longevity in the Bama population. Int. J. Environ. Res. Public Health. 2017;14:505. https://doi.org/10.3390/ijerph14050505
39. Kim T., Park A. Y., Baek Y., Cha S. Genome-wide association study reveals four loci for lipid ratios in the Korean population and the constitutional subgroup. PLoS One. 2017;12(1):e0168137. https://doi.org/10.1371/journal.pone.0168137
40. Albrechtsen A. Exome sequencing-driven discovery of coding polymorphisms associated with common metabolic phenotypes. Diabetologia. 2013;56:298-310. https://doi.org/10.1007/s00125-012-2756-1
41. Ahn Y., Sims C., Murray M. J. Multiple modes of LRP4 function in modulation of Wnt/β-catenin signaling during tooth development. Development. 2017;144(15):2824-2836. https://doi.org/10.1242/dev.150680
42. St Hilaire C., Ziegler S. G., Markello T. C.NT5E mutations and arterial calcifications. N. Engl. J. Med. 2011;364:432- 442. https://doi.org/10.1056/NEJMoa0912923
43. Alpy F. The steroidogenic acute regulatory protein homolog MLN64, a late endosomal cholesterol-binding protein. J. Biol. Chem. 2001;276:4261-4269. https://doi.org/10.1074/jbc.M006279200
44. Raffield L. M., Cox A. J., Hsu F. C., Ng M. C., Langefeld C. D. [et al.]. Impact of HDL genetic risk scores on coronary artery calcified plaque and mortality in individuals with type 2 diabetes from the Diabetes Heart Study. Cardiovasc. Diabetol. 2013;12:95-10.1186/1475-2840-12-95
45. Baldán A., Bojanic D. D., Edwards P. A. The ABCs of sterol transport. J. Lipid Res. 2009;50:S80–S85. https://doi.org/10.1194/jlr.R800044-JLR200
46. Yokoyama S. ABCA1 and biogenesis of HDL. J. Atheroscler. Thromb. 2006;13(1):1-15.
47. Sene A., Khan A. A., Cox D. Impaired cholesterol efflux in senescent macrophages promotes age-related macular degeneration. Cell Мetab. 2013;17(4):549-561. https://doi.org/10.1016/j.cmet.2013.03.009
48. Kathiresan S., Willer C., Peloso G. Common variants at 30 loci contribute to polygenic dyslipidemia. Nat. Genet. 2009;41:56-65. https://doi.org/10.1038/ng.291
49. Hiura Y., Shen C. S., Kokubo Y., Okamura T., Morisaki T. Identification of genetic markers associated with high-density lipoprotein-cholesterol by genome-wide screening in a Japanese population: the Suita study. Circ. J. 2009;73(6):1119-1126.
50. Takeuchi F. Association of genetic variants influencing lipid levels with coronary artery disease in Japanese individuals. PLoS One. 2012;7:e46385. https://doi.org/10.1371/journal.pone.0046385
51. Radovica I., Fridmanis D., Vaivade I., Nikitina-Zake L., Klovins J. The association of common SNPs and haplotypes in CETP gene with HDL cholesterol levels in Latvian population. PLoS One. 2013;8(5):e64191. https://dx.doi.org/10.1371%2Fjournal.pone.0064191
52. Chang M. H., Ned R. M., Hong Y., Yesupriya A., Yang Q. acial/ethnic variation in the association of lipid-related genetic variants with blood lipids in the US adult population. Circ. Cardiovasc. Genet. 2011;4(5):523-533. https://doi.org/10.1161/CIRCGENETICS.111.959577
53. Haase C. L., Tybjaerg-Hansen A., Qayyum A. A., Schou J., Nordestgaard B. G., Frikke-Schmidt R. LCAT, HDL cholesterol and ischemic cardiovascular disease: a Mendelian randomization study of HDL cholesterol in 54,500 individuals. J. Clin. Endocrinol.Metab. 2012;97(2):E248-56. https://doi.org/10.1210/jc.2011-1846
54. Jayashree S., Arindam M. and Vijay K. V. 2015 Genetic epidemiology of coronary artery disease: an Asian Indian perspective. J. Genet. 2015;94(3):539-549.
55. Khera A. V., Kathiresan S. Genetics of coronary artery disease: discovery, biology and clinical translation. Nat. Rew. Genet. 2017;18(6):331-344. https://doi.org/10.1038/nrg.2016.160
56. Mehta N. N. A Genome-Wide Association Study in Europeans and South Asians Identifies Five New Loci for Coronary Artery Disease. Nat. Genet. 2011;43(4):465-466. https://doi.org/10.1038/ng.782

Keywords: GWAS, genome-wide associative study, lipid metabolism, coronary artery disease

Stavropol State Medical Academy
Pyatigorsk State Research Institute of Balneotherapeutics
Pyatigorsk State Pharmaceutical Academy