logo
Medical news
of the North Caucasus
Scientific journal
Mass media registration certificate dated December 7, 2006.
Series ПИ #ФС 77-26521.
Federal service for surveillance over non-violation of the legislation in the sphere of mass communications and protection of cultural heritage.
ISSN 2073-8137
rus
русский
eng
english

Site search



Correspondence address
310 Mira Street, Stavropol, Russia, 355017

Tel
+7 8652 352524; +7 8652 353229.

Fax
+7 8652 352524.

E-mail
medvestnik@stgmu.ru

Impact of Na+/I– symporter to non-oncologic pathology of the thyroid

[Review]
Dibahan Tsomartova; Elizaveta Chereshneva; Marina Ivanova; Sergey Pashin; Sergey Kuznetsov;

The Na+/I– symporter is a membrane protein implicated in iodide transport into thyroid follicular cells. The article reviews data on structure and function of Na+/I– symporter as well as transcriptional and posttranscriptional regulation of Na+/I– symporter and regulation of Na+/I– symporter expression by cytokines. The review summarizes current knowledge on implication of Na+/I– symporter in non-oncologic pathology of the thyroid like autoimmune diseases, non-thyroidal illness syndrome, and thyroid dysfunction associated with exposure to environmental pollutants like endocrine disruptors.

Download

References:
1. He L., Vasiliou K., Nebert D. W. Analysis and update of the human solute carrier (SLC) gene superfamily. Hum. Genomics 2009;3:195-206. https://doi.org/10.1186/1479-7364-3-2-195
2. Semenov D. Y., Boriskova M. E., Farafonova U. V., Grozov R. V., Pankova P. A. [et al.]. Prognostic value of Sodium-Iodide Symporter (NIS) in differentiated thyroid cancer. Klinicheskaya i ehksperimental’naya tireodologiya. – Clinical and experimental Thyroidology. 2015;11(1):50-58. (In Russ.). http://dx.doi.org/10.14341/ket2015150-58
3. Dzhikiya E. L., Avilov O. N., Kiseleva Ya. Yu., Kulinich T. M., Bozhenko V. K. Sodium/ iodide symporter (NIS): structure, function and role in in thyroid diseases. Vestnik Rossiyskogo nauchnogo centra Rentgenoradiologii. – Bulletin of the Russian scientific center of roentgenradiology. 2018;18(1):3. (In Russ.).
4. Portulano C., Paroder-Belenitsky M., Carrasco N. The Na+/I− Symporter (NIS): Mechanism and Medical Impact. Endocr Rev. 2014;35(1):106-149. https://doi.org/10.1210/er.2012-1036
5. Pryma D. A., Mandel S. J. Radioiodine therapy for thyroid cancer in the era of risk stratification and alternative targeted therapies. J. Nucl. Med. 2014;55(9):1485-1491. https://doi.org/10.2967/jnumed.113.131508
6. Ravera S., Reyna-Neyra A., Ferrandino G., Amzel L., Carrasco N. The Sodium/Iodide Symporter (NIS): Molecular Physiology and Preclinical and Clinical Applications. Annu. Rev. Physiol. 2017;79:261-289. https://doi.org/10.1146/annurev-physiol-022516-034125
7. Vunderpump M. The epidemiology of thyroid disease. Minerva Med. 2017;108(2):116-123. https://doi.org/10.23736/S0026-4806.16.04918-1
8. Dai G., Levy O., Carrasco N. Cloning and characterization of the thyroid iodide transporter. Nature. 1996;379:458- 460. https://doi.org/10.1038/379458a0
9. Darrouzet E., Lindenthal S., Marcellin D., Pellequer J.-L., Pourcher T. The sodium/iodide symporter: State of the art of its molecular characterization. Biochimica et Biophysica Acta. 2014;1838:244-253. https://doi.org/10.1016/j.bbamem.2013.08.013
10. Nicola J. P., Basquin C., Portulano C., Reyna-Neyra A., Paroder M. [et al.]. The Na+/I− symporter mediates active iodide uptake in the intestine, Am. J. Physiol. Cell Physiol. 2009;296:C654-C662. https://doi.org/10.1152/ajpcell.00509.2008
11. Paroder-Belenitsky M., Maestas M. J., Dohán O., Nicola J. P., Reyna-Neyra A. Mechanism of anion selectivity and stoichiometry of the Na+/I− symporter (NIS). PNAS. 2011;108:17933-17938. https://doi.org/10.1073/pnas.1108278108
12. Kogai T., Brent G. The sodium iodide symporter (NIS): Regulation and approaches to targeting for cancer the 370. https://doi.org/10.1016/j.pharmthera.2012.06.007
13. Carvalho D., Dupuy C. Thyroid hormone biosynthesis and release. Molecular and Cellular Endocrinology. 2017;458: 6-15. http://dx.doi.org/10.1016/j.mce.2017.01.038
14. Luo Y., Ishido Y., Hiroi N., Ishii N., Suzuki K. The emerging roles of thyroglobulin. Advances in Endocrinology. 2014. Article ID 189194. 7 pp. https://doi.org/10.3390/ijms150712895
15. Ishido Y., Yamazaki K., Kammori M., Sugishita Y., Luo Y. [et al.]. Thyroglobulin suppresses thyroid-specific gene expression in cultures of normal, but not neoplastic human thyroid follicular cells. J. Clin. Endocrinol. Metab. 2014;99(4):694-702. https://doi.org/10.1210/jc.2013-3682
16. Sellitti D. F., Suzuki K. Intrinsic Regulation of Thyroid Function by Thyroglobulin. Thyroid. 2014;24(4):625-638. https://doi.org/10.1089/thy.2013.0344
17. Pesce L., Kopp P. Iodide transport: implications for health and disease . International Journal of Pediatric Endocrinology. 2014;2014:8. Available at: http://www.ijpeonline.com/content/2014/1/8. https://doi.org/10.1186/1687-9856-2014-8
18. Yaglova N. V., Sledneva Y. P., Nazimova S. V., Obernikhin S. S. , Yaglov V. V. Sex Differences in the Production of SLC5A5, Thyroid Peroxidase, and Thyroid Hormones in Pubertal Rats Exposed to Endocrine Disruptor Dichlorodiphenyltrichloroethane (DDT) during Postnatal Ontogeny. Byulleten’ ehksperimental’noj biologii i mediciny. – Bulletin of experimental biology and medicine. 2018;164(4):430-433. (In Russ.). https://doi.org/10.1007/s10517-018-4005-1
19. Kogai T., Curcio F., Hyman S., Cornford E. M., Brent G. A., [et al.]. Induction of follicle formation in long-term cultured normal human thyroid cells treated with thyrotropin stimulates iodide uptake but not sodium/iodide symporter messenger RNA and protein expression. J. Endocrinol. 2000;167:125-135. https://doi.org/10.1677/joe.0.1670125
20. Hingorani M., Spitzweg C., Vassaugs G., Newbold K., Melcher A. [et al.]. The Biology of the Sodium Iodide Symporter and its Potential for Targeted Gene Delivery. Curr. Cancer Drug Targets. 2010;10(2):242-267. https://doi.org/10.2174/156800910791054194
21. Serrano-Nascimento C., Calil-Silveira J., Nunes M. T. Posttranscriptional regulation of sodium-iodide symporter mRNA expression in the rat thyroid gland by acute iodide administration. Am. J. Physiol. Cell. Physiol. 2010;298:C893- 899. https://doi.org/10.1152/ajpcell.00224.2009
22. Purtell K., Paroder-Belenitsky M., Reyna-Neyra A., Nicola J. P., Koba W. The KCNQ1-KCNE2 K+ channel is required for adequate thyroid I− uptake. FASEB J. 2012;26:3252-3259. https://doi.org/ 10.1096/fj.12-206110
23. Roepke T. K., King E. C., Reyna-Neyra A., Paroder M., Purtell K. [et al.]. Kcne2 deletion uncovers its crucial role in thyroid hormone biosynthesis. Nat Med. 2009;15:1186- 1194. https://doi.org/10.1038/nm.2029
24. Rapoport B., McLachlan S. Graves’ Disease: Pathogenesis and Treatment Springer Science & Business Media; 2012. 25. Alotaibi H., Tuzlakoglu-Ozturk M., Tazebay U. The Thyroid Na+/I- Symporter: molecular characterization and genomic regulation. Mol Imaging Radionucl. Ther. 2017;26(Suppl. 1):92-101. https://doi.org/10.4274/2017.26.suppl.11
26. Spitzweg C., Joba W., Morris J. C., Heufelder A. E. Regulation of sodium iodide symporter gene expression in FRTL-5 cells. Thyroid. 1999;9:821-830. https://doi.org/10.1089/thy.1999.9.821
27. Czarnocka B. Thyroperoxidase, thyroglobulin, Na(+)/I(-) symporter, pendrin in thyroid autoimmunity. Front. Biosci. (Landmark Ed). 2011;16:783-802.
28. Kucharska A. M., Czarnocka B., Demkow U. Anti-natrium/ iodide symporter antibodies and other anti-thyroid antibodies in children with Turner’s syndrome. Adv. Exp. Med. Biol. 2013;756:131-138. https://doi.org/10.1007/978-94-007-4549-0_17
29. McLachlan S., Rapoport B. Breaking Tolerance to Thyroid Antigens: Changing Concepts in Thyroid Autoimmunity. Endocrine Reviews. 2014;35:59-105. https://doi.org/10.1210/er.2013-1055
30. Yaglova N. V. Nonthyroidal illness syndrome in acute bacterial endotoxicosis: pathogenesis and method of correction. Vestnik Rossiyskoi Akademii Meditsinskikh Nauk. – Bulletin of the Russian Academy of Sciences. 2013;68(3):24-32. (In Russ.). https://doi.org/10.15690/vramn.v68i3.597
31. Yaglova N. V., Berezov T. T.Regulation of thyroid and pituitary function by bacterial lipopolysaccharide. Biomedicinskaya Khimiya. – Biomedical chemistry. 2010;56(2):179-186. (In Russ.). https://doi.org/10.18097/pbmc20105602179
32. Nicola J., Velez M., Lucero A., Fozzati L., Pellizas C. [et al.]. Functional Toll-Like Receptor 4 Conferring Lipopolysaccharide Responsiveness Is Expressed in Thyroid Cells. Endocrinology. 2009;150(1):500-508. https://doi.org/10.1210/en.2008-0345
33. Yamazaki K., Tanigawa K., Suzuki K., Yamada E., Yamada T. [et al.]. Iodide-induced chemokines and genes related to immunological function in cultured human thyroid follicles in the presence of thyrotropin. Thyroid. 2010;20(1):67-76.
https://doi.org/10.1089/thy.2009.0242
34. Reale C., Zotti T., Scudiero I., Vito P., Stilo R. The NF-κB Family of Transcription Factors and Its Role in Thyroid Physiology. Vitamins and Hormones. 2018;106:195- 210. https://doi.org/10.1016/bs.vh.2017.05.003
35. Nicola J., Peyret V., Nazar M., Romero J., Lucero A. [et al.]. S-nitrosylation of NF-kB p65 inhibits TSH-induced Na+/I- symporter expression. Endocrinology. 2015;1566:4741-4754 http://dx.doi.org/10.1210/en.2015-1192
36. Nicola J., Nazar M., Mascanfroni I., Pellizas C., Masini-Repiso A. NF-kappaB p65 subunit mediates lipopolysaccharide-induced Na(+)/I(-) symporter gene expression by involving functional interaction with the paired domain transcription factor Pax8. Molecular Endocinology. 2010;24:1846-1862. https://doi.org/10.1210/me.2010-0102
37. Gore A. C., Chapell V. A., Fenton S. E., Flaws J. A., Nadal A. [et al.]. S. EDC-2: The Endocrine Sociery’s Second Scientific Statement on Endocrine Disrupting Chemicals. Endocrine Reviews. 2015;36(6):1-150. https://doi.org/ 10.1210/er.2015-1010
38. World Health Organization. 2012. State of the Science of Endocrine-Disrupting Chemicals. Geneva: International Programme on Chemical Safety.
39. Boas M., Feldt-Rasmussen U., Main K. M. Thyroid effects of endocrine disrupting chemicals. Mol. Cell. Endocrinol. 2012;355:240-248. https://doi.org/10.1016/j.mce.2011.09.005
40. Calsolaro V., Pasqualetti G., Niccolai F., Caraccio N., Monzani F. Thyroid disrupting chemicals. Int. J. Mol. Sci. 2017;18(12):25-83. Available at: www.mdpi.com/1422- 0067/18/12/2583, Accessed December 1, 2017.
41. Duntas L. H. Chemical contamination and the thyroid. Endocrine. 2015;48:53-64. https://doi.org/10.1007/s12020-014-0442-4
42. Yaglov V. V., Yaglova N. V. Alterations of thyroid morphology and function after long-term exposure to low doses of endocrine disruptor dichlorodiphenyltrichloroethane. Sovremennye Tehnologii v Medicine. – Modern technologies in medicine. 2014;6(4):55-61. (In Russ.).
43. Yaglova N. V., Yaglov V. V. Mechanisms of disruptive action of dichlorodiphenyltrichloroethane (DDT) on the function of thyroid follicular epitheliocytes. Byulleten’ ehksperimental’noj biologii i mediciny. – Bulletin of Experimental Biology and Medicine. 2015;160(2):231-233. (In Russ.). https://doi.org/10.1007/s10517-015-3136-x

Keywords: Na+/I– symporter, thyroid, cytokines, non-thyroidal illness syndrome, endocrine disruptors


Founders:
Stavropol State Medical Academy
Pyatigorsk State Research Institute of Balneotherapeutics
Pyatigorsk State Pharmaceutical Academy