logo
Medical news
of the North Caucasus
Scientific journal
Mass media registration certificate dated December 7, 2006.
Series ПИ #ФС 77-26521.
Federal service for surveillance over non-violation of the legislation in the sphere of mass communications and protection of cultural heritage.
ISSN 2073-8137
rus
русский
eng
english

Site search



Correspondence address
310 Mira Street, Stavropol, Russia, 355017

Tel
+7 865 2352511, +7 865 2353229.

E-mail
medvestnik@stgmu.ru

Microbiota – gut – brain communication system: the role of neurotransmitters and neuropeptides

[Reviews]
Marina Samotrueva; Olga Bashkina; Alexandra Aleksandrovna Tsibizova;

The human gut microbiota, representing a unique set of metabolically active microorganisms, plays an important role in the regulation of a wide range of physiological processes, including the functioning of the neuroimmunoendocrine system through neuronal, immune and metabolic interactions, which play a role in the pathogenesis of neurodegenerative processes. Numerous studies indicate the homeostatic role of the intestinal microbiota due to the production of biologically active molecules (neuropeptides, neurotransmitters, bacteriocins, neurotrophic factors, etc.), which exhibit neuroactive, immunomodulatory, metabolic and antimicrobial properties at the local and systemic levels, which actualizes the study of them as promising therapeutic agents.

Download

References:
1. Sun P., Su L., Zhu H., Li X., Guo Y. [et al.]. Gut Microbiota Regulation and Their Implication in the Development of Neurodegenerative Disease. Microorganisms. 2021;9(11):2281. https://doi.org/10.3390/microorganisms9112281
2. Rowland I., Gibson G., Heinken A., Scott K., Swann J. [et al.]. Gut microbiota functions: Metabolism of nutrients and other food components. Eur. J. Nutr. 2018;57:1-24. https://doi.org/10.1007/s00394-017-1445-8
3. Khazova E. V., Safina D. D. State of the gut microbiota in patients with chronic heart failure. Meditsinskii vestnik Severnogo Kavkaza. – Medical News of North Caucasus. 2023;18(1):104-110. (In Russ.). https://doi.org/10.14300/mnnc.2023.18024
4. Sanz J. A., Aidy S. E. Microbiota and gut neuropeptides: a dual action of antimicrobial activity and neuroimmune response. Psychopharmacology. 2019;236:1597-1609. https://doi.org/10.1007/s00213-019-05224-0
5. Sharon G., Sampson T. R., Geschwind D. H., Mazmanian S. K. The central nervous system and the gut microbiome. Cell. 2016;167(4):915-932. https://doi.org/10.1016/j.cell.2016.10.027
6. Eremenko I. I. How does the gut microbiota affect the functioning of the central nervous system? Mechanisms of microbiota participation in the pathogenesis of Alzheimer’s disease. Mezhdunarodnyy nauchno-issledovatel’skiy zhurnal. – International Research Journal. 2020;6(96):101-106. (In Russ.). https://doi.org/10.23670/IRJ.2020.96.6.057
7. Pimenova E. S., Russkina M. I., Petrikov S. S., Ramazanov G. R., Zavaliy L. B. Pathology of the enteric nervous system in parkinson’s disease. Meditsinskii vestnik Severnogo Kavkaza. – Medical News of North Caucasus. 2022;17(4):444-449. (In Russ.). https://doi.org/10.14300/mnnc.2022.17108
8. Lin L., Zhang J. Role of intestinal microbiota and metabolites on gut homeostasis and human diseases. BMC Immunol. 2017;18:2. https://doi.org/10.1186/s12865-016-0187-3
9. Shanenko E. F., Nikolaev Yu. A., Ganina V. I., Serykh I. N., Oleskin A. V. [et al.]. Synthesis of biogenic amines by lactic acid bacteria on media of plant and animal origin. Microbiology. 2022;91(4):433-450 (In Russ.). https://doi.org/10.31857/S0026365622300206
10. Chen Xu., Chen Y. Regulation of neurotransmitters by the intestinal microbiota and influence on cognition in neurological disorders. Nutrients. 2021;13(6):2099. https://doi.org/10.3390/nu13062099
11. Cui Y., Miao K., Niyaphorn S., Qu X. Production of gamma-aminobutyric acid from lactic acid bacteria: a systematic review. Int. J. Mol. Sci. 2020;21(3):995. https://doi.org/10.3390/ijms21030995
12. Chen Y., Xu J., Chen Y. Regulation of neurotransmitters by the gut microbiota and influence on cognition in neurological disorders. Nutrients. 2021;13(6):2099. https://doi.org/10.3390/nu13062099
13. Strandwitz F. Modulation of neurotransmitters by the gut microbiota. Brain Research. 2018;1693:128-133. https://doi.org/10.1016/j.brainres.2018.03.015
14. Levendahl N. K., Ryan J. F., Schellekens H. Intestinal Peptides and microbiome: Focus on ghrelin. Current opinion in the field of endocrinology, diabetes and obesity. 2021;28(2):243. https://doi.org/10.1097/MED.0000000000000616
15. Stewart O. A., Wu F., Chen Y. The role of the stomach microbiota in gastric cancer. Intestinal Microbes. 2020;11(5):1220-1230. https://doi.org/10.1080/19490976.2020.1762520
16. Capo-Ortuño M. I., Seoane L. M., Marie M., Prado M., Gomez-Sumacero H. M. [et al.]. The composition of the intestinal microbiota in male rat models with different nutritional status and physical activity and its relationship with serum levels of leptin and ghrelin. PloS one. 2013;8(5):e65465. https://doi.org/10.1371/journal.pone.0065465
17. Kvasa M., Stephens R. V., Toderean R., Kose K. Intestinal perception by the intestinal microbiota: targeting intestinal peptides. Frontiers in Endocrinology. 2019;10:82. https://doi.org/10.3389/fendo.2019.00082
18. Stornello G., Capurso G. Gut microbiota and pancreatic diseases. Gastroenterologist and nutritionist Minerva. 2017;63(4):399-410. https://doi.org/10.23736/s1121-421x.17.02387-x
19. Rabbi M. F., Manyaka P. M., Assa N., Metz-Boutique M. H., Khafipour E. [et al.]. Human catestatin changes the composition of the gut microbiota in mice. Frontiers in Microbiology. 2017;7:2151. https://doi.org/10.3389/fmicb.2016.02151
20. Lyubimova N. V., Timofeev Y. S., Churikova T. K., Markovich A. A., Emelyanova G. S. [et al.]. Chromogranin A and serotonin in evaluating the effectiveness of treatment of neuroendocrine tumors. Al’manah klinicheskoj mediciny. – Almanac of Clinical Medicine 2019; 47(8):685-690. (In Russ.). https://doi.org/10.18786/2072-05-2019-47-054
21. Resino M. The Microbiota Revolution: excitement and caution. Europ. J. Immunol. 2017;47(9):1406-1413. https://doi.org/10.1002/eji.201646576
22. Li J., Li X., Song J., Yan B., Rock S. [et al.]. Absence of neurotensin attenuates intestinal dysbiosis and inflammation by maintaining Mmp7/α-defensin axis in diet-induced obese mice. FASEB journal: official publication of the Federation of American Societies for Experimental Biology. 2020;34(6):8596. https://doi.org/10.1096/fj.201902374RR
23. De Vader F., Grasset E., Manners Holm L., Karsenty G., Macpherson A. J. [et al.]. The gut microbiota regulates the maturation of the adult intestinal nervous system through enteral serotonin networks. Proceedings of the National Academy of Sciences. 2018;115(25):6458-6463. https://doi.org/10.1073/pnas.1720017115
24. Todorov S. D., In Holzapfel, Nero L. A. Characteristics of a new bacteriocin produced by plantarum lactobacillus ST8SH, and some aspects of its mechanism of action. Annals of Microbiology. 2016;66:949-962. https://doi.org/10.1007/s13213-015-1180-4
25. Mokoena M. Lactic acid bacteria and their bacteriocins: classification, biosynthesis and use against uropathogens: a mini-review. Molecules. 2017;22(8):1255. https://doi.org/10.3390/molecules22081255
26. Zimina M., Babich O., Prosekov A., Sukhoi S., Ivanova S. [et al.]. Overview of global trends in the classification, methods of production and use of bacteriocins. Antibiotics. 2020;9(9):553. https://doi.org/10.3390/antibiotics9090553
27. Soltani S., Hamami R., Cotter D., Rebuffat S., Said L. B. [et al.]. Bacteriocins as antimicrobials of a new generation: aspects of toxicity and regulation. Reviews of Microbiology FEMS. 2021;45(1):fuaa039. https://doi.org/10.1093/femsre/fuaa039
28. Dischinger J., Chipalu S. B., Bierbaum G. Antibiotics: promising candidates for future healthcare applications. International Journal of Medical Microbiology. 2014;304(1):51-62. https://doi.org/10.1016/j.ijmm.2013.09.003
29. Enezawa H., Motegi M., Oishi A., Hose F., Higashi S. [et al.]. Antibiotics produced by oral inhabitants as a trigger of dysbiosis of the human intestinal microbiota. International Journal of Molecular Sciences. 2021;22(7):3343. https://doi.org/10.3390/ijms22073343
30. Simons A., Alhanut K., Duval R. E. Bacteriocins, antimicrobial peptides of bacterial origin: a review of their biology and their effects on multidrug-resistant bacteria. Microorganisms. 2020;8(5):639. https://doi.org/10.3390/microorganisms8050639
31. Bolatchiev A. V., Baturin V. V., Shchetinin E. V., Bogacheva E. V. New antimicrobial peptides developed using a recurrent neural network reduce mortality in experimental sepsis. Antibiotics (Basel). 2022;11(3):411. https://doi.org/10.3390/antibiotics11030411
32. Yu S., Balasubramanian I., Laubitz D., Cadwell K., Kiela P. R. [et al.]. Lysozyme obtained from Paneta cells determines the composition of the mucolytic microbiota and the inflammatory tone of the intestine. Immunity. 2020;53(2):398-416. https://doi.org/10.1016/j.immuni.2020.07.010
33. Shamova O. V., Zharkova M. S., Chernov A. N., Vladimirova E. V., Sukhareva M. S. [et al.]. Antimicrobial peptides of innate immunity as prototypes of new agents to fight antibiotic-resistant bacteria. Rossiyskiy zhurnal personalizirovannoy meditsiny. – Russian Journal for Personalized Medicine. 2021;1(1):146-172. (In Russ.).
34. Gao X., Ding J., Liao K., Xu J., Liu X., Lu V. Defensins: a natural peptide antibiotic. Advanced Drug Delivery Reviews. 2021;179:114008. https://doi.org/10.1016/j.addr.2021.114008
35. Van Eyck M., Borysthenes S., Cen L., Rosa M., Moreno M. J. [et al.]. Antimicrobial peptides inspired by cathelicidin as new antifungal compounds. Medical Mycology. 2020;58(8):1073-1084. https://doi.org/10.1093/mmy/myaa014
36. Lei J., Sun L., Huang S., Zhu C., Li P. [et al.]. Antimicrobial peptides and their potential clinical application. American Journal of Translational Research. 2019;11(7):3919.
37. Miki T., Goto R., Fujimoto M., Okada N., Hardt W. D. Bactericidal lectin RegIIIß prolongs intestinal colonization and enteropathy in a mouse model of streptomycin for salmonella diarrhea. Cellular Host and Microbe. 2017;21(2):195-207. https://doi.org/10.1016/j.chem.2016.12.008
38. Fusco A., Savio V., Cammarota M., Alfano A., Schiraldi C., Donnarumma G. Beta-defensin-2 and beta-defensin-3 reduce intestinaL damage caused by Salmonella typhimurium moduLating the expression of cytokines and enhancing the probiotic activity of Enterococcus faecium. J. Immunol. Res. 2017;2017:6976935. https://doi.org/10.1155/2017/6976935
39. Yoo B. B., Mazmanian S. K. The enteric network: interactions betweenthe immune and nervous systems of the gut. Immunity. 2017;46:910-926. https://doi.org/10.1016/j.immuni.2017.05.011
40. Wu Yu., He H., Cheng Z., Bai Yu., Ma H. The role of neuropeptide Y and peptide YY in the development of obesity along the gut-brain axis. Modern Science of Proteins and Peptides. 2019;20(7):750-758. https://doi.org/10.2174/1389203720666190125105401
41. Biagini K., Barbie K., Barrel V., Filoli M., Deshelotte [et al.]. The pathogenic potential of Pseudomonas fluorescens MFN1032 on enterocytes can be modulated by serotonin, substance P and adrenaline. Archive of Microbiology. 2015;197:983-990. https://doi.org/10.1007/s00203-015-1135-y
42. Arrest Sanz J., El Aidi S. Microbiota and intestinal neuropeptides: double action of antimicrobial activity and neuroimmune response. Psychopharmacology. 2019;236(5):1597-1609. https://doi.org/10.1007/s00213-019-05224-0
43. Erickson A. S., Baines M., McAdams Z., Daniels J., Busy S. B. [et al.]. The receptor associated with the G-protein, VPAC1, mediates vasoactive intestinal peptide-dependent functional homeostasis of the intestinal microbiota. Gastro Hepatitis Advances. 2022;1(2):253-264. https://doi.org/10.1016/j.gastha.2021.11.005
44. Johnson K. V., Burnet V. The opposite effect of antibiotics and antimicrobial status on neuropeptide systems involved in social behavior and pain regulation. Neurology BMC. 2020;21(1):1-14. https://doi.org/10.1186/s12868-020-00583-3
45. Shizuka S., Kita T., natsu H., Kitamura K. Adrenomedulline: a new therapeutic agent for the treatment of inflammatory bowel diseases. Biolekarstvo. 2021;9(8):1068. https://doi.org/10.3390/biomedicines9081068
46. Farzi A., Frelich E. E., Holzer Р. Gut microbiota and neuroendocrine system. Neurotherapy. 2018;15:5-22. https://doi.org/10.1007/s13311-017-0600-5
47. Yu Y., Yang W., Li Y., Cong Y. Enteroendocrine cells: sensitive gut microbiota and regulating inflammatory bowel diseases. Inflammatory Bowel Diseases. 2020;26(1):11-20. https://doi.org/10.1093/ibd/izz217
48. Rojas-Perila M., Kemmerling U., Quinones V., Michels A., Rojas V. Antimicrobial peptides (AMP): a potential therapeutic strategy against trypanosomiasis? Biomolecules. 2023;13(4):599. https://doi.org/10.3390/biom13040599
49. Kumar A. A. Adrenomedulline in sepsis: finally, friend or foe? Indian Journal of Intensive Care Medicine: Peer-reviewed. Official Publication of the Indian Society of Intensive Care Medicine. 2020;24(12):1151. https://doi.org/10.5005/jp-journals-10071-23669
50. Margolis K. G., Gershon M. D. Enteral neuronal regulation of intestinal inflammation. Trends in Neuroscience. 2016;39(9):614-624. https://doi.org/10.1016/j.tins.2016.06.007
51. Trid R. D. Mechanisms of gain control in the nociceptive system. Pain. 2016;157(6):1199-1204. https://doi.org/10.1097/j.pain.0000000000000499
52. Udit S., Blake K. and Chu I. M. Somatosensory and autonomic neuronal regulation of the immune response. Nature Reviews Neurology. 2022;23(3):157-171. https://doi.org/10.1038/s41583-021-00555-4
53. Mark-Yuzefovich L., Nedoshitko B., Grokhotskaya M., Zhmievsky M. A., Tchaikovsky R. [et al.]. Molecular mechanisms of neurogenic inflammation of the skin. International Journal of Molecular Sciences. 2023;24(5):5001. https://doi.org/10.3390/ijms24055001
54. Li K., Wu H., Liu S., Zhao Yu, Zhu J. [et al.]. The role of neuropeptide Y in neurodegenerative and neuroimmune diseases. Frontiers in Neurology. 2019;13:869. https://doi.org/10.3389/fnins.2019.00869
55. Heik M., Ibarra A. Microbiota and memory: symbiotic therapy to counteract cognitive decline? Blood Circulation of the Brain. 2019;5(3):124. https://doi.org/10.4103/bc.bc_34_19
56. Sánchez B., Gueimonde M., Salvador A. Peña, Bernardo D. Intestinal Microbiota as Modulators of the Immune System. Journal of Immunology Research. 2015;2015. https://doi.org/10.1155/2015/159094
57. Banik S., Nat K., Roy R. Microbiome and gut-brain axis affecting stress behavior. American Journal of Applied Biotechnological Research. 2023;3(4):17-34. https://doi.org/10.15864/ajabtr.343
58. Wozniak D., Tsikhi V., Pshislavsky J., Drzhimala-Chizh S. The role of microbiota and enteroendocrine cells in maintaining homeostasis in the human digestive tract. Advances in Medical Sciences. 2021;66(2):284-292. https://doi.org/10.1016/j.advms.2021.05.003
59. Sorboni S. G., Moghaddam H. S., Jafarzadeh-Esfehani R., Suleymanpour S. A comprehensive review of the role of the gut microbiome in human neurological disorders. Reviews of Clinical Microbiology. 2022;35(1):e00338-20. https://doi.org/10.1128/CMR.00338-20
60. Manderino L., Carroll I., Azcarate-Peril M. A., Rochette A., Heinberg L. [et al.]. Preliminary Evidence for an Association Between the Composition of the Gut Microbiome and Cognitive Function in Neurologically Healthy Older Adults. J. Int. Neuropsychol. Soc. 2017;23(8):700-705.

Keywords: gut microbiota, neuropeptides, neurotransmitters, bacteriocins, antimicrobial peptides, neurotrophic factors, neuronal interactions


Founders:
Stavropol State Medical Academy
Pyatigorsk State Research Institute of Balneotherapeutics
Pyatigorsk State Pharmaceutical Academy