logo
Medical news
of the North Caucasus
Scientific journal
Mass media registration certificate dated December 7, 2006.
Series ПИ #ФС 77-26521.
Federal service for surveillance over non-violation of the legislation in the sphere of mass communications and protection of cultural heritage.
ISSN 2073-8137
rus
русский
eng
english

Site search



Correspondence address
310 Mira Street, Stavropol, Russia, 355017

Tel
+7 865 2352511, +7 865 2353229.

E-mail
medvestnik@stgmu.ru

Pharmacogenetics of anticancer antibiotics

[Reviews]
Ruslan Evgenievich Kazakov; Alexey Prokofiev; Vladimir Aleksandrovich Evteev; Marina Vladimirovna Zhuravleva; Elena Yurievna Demchenkova; Vladimir Kukes;

The paper provides an overview of genetic polymorphisms associated with the efficacy and safety of antitumor antibiotics is presented. Polymorphisms affecting anthracycline-induced cardiotoxicity are considered, three of which are the most studied in this respect (rs2229774 of the RARG gene, rs7853758 of the SLC28A3 gene, and rs17863783 of the UGT1A6 gene). Information is provided on the effect of the BLMH gene on the efficacy and pulmonary toxicity of bleomycin, as well as the effect of the NQO1 gene on intracellular activation and, accordingly, the efficacy of mitomycin. The considered genetic polymorphisms can serve as biomarkers for the development and optimization of personalized approaches in the treatment of cancer

Download

References:
1. Aminkeng F., Ross C. J. D., Rassekh S. R., Hwang S., Rieder M. J. [et al.]. Recommendations for genetic testing to reduce the incidence of anthracycline-induced cardiotoxicity. Br. J. Clin. Pharmacol. 2016;82(3):683-695. https://doi.org/10.1111/bcp.13008
2. Oliveira G., Al-Kindi S., Caimi P., Lazarus H. Maximizing an thracycline tolerability in hematologic malignancies: Treat to each heart’s content. Blood Reviews. 2016;30(3):169-178. https://doi.org/10.1016/j.blre.2015.11.001
3. Kuzheleva E. A., Garganeeva A. A., Tukish O. V., Kondratiev M. Yu., Witt K. N., Chernov V. I. Review of potential predictors of anthracycline-induced cardiotoxicity from the perspective of the pathogenesis of the disease. Sibirskiy zhurnal klinicheskoy i eksperimental’noy meditsiny. – Siberian Journal of Clinical and Experimental Medicine. 2022;37(3):19-28. (In Russ.). https://doi.org/10.29001/2073-8552-2022-37-3-19-28
4. Cardinale D., Iacopo F., Cipolla C. M. Cardiotoxicity of Anthracyclines. Front. Cardiovasc. Med. 2020;7:26. https://doi.org/10.3389/fcvm.2020.00026
5. Herrmann J. Adverse cardiac effects of cancer therapies: cardiotoxicity and arrhythmia. Nat. Rev. Cardiol. 2020;17(8):474-502. https://doi.org/10.1038/s41569-020-0348-1
6. Vasyuk Yu. A., Gendlin G. E., Emelina E. I., Shupenina E. Yu., Balluzek M. F. [et al.]. A consensus opinion of Russian experts on the prevention, diagnosis and treatment of cardiovascular toxicity of anticancer therapy. Rossiyskiy kardiologicheskiy zhurnal. – Russian journal of cardiology. 2021;26(9):4703. (In Russ.). https://doi.org/10.15829/1560-4071-2021-4703
7. Bansal N., Adams M. J., Ganatra S., Colan S. D., Aggarwal S. [et al.]. Strategies to prevent anthracycline-induced cardiotoxicity in cancer survivors. Cardio-Oncology. 2019;5:18. https://doi.org/10.1186/s40959-019-0054-5
8. Yu H., Qiu Y., Yu H., Wang Z., Xu J. [et al.]. Anthracycline Induced Cardiac Disorders in Childhood Acute Lymphoblastic Leukemia: A Single-Centre, Retrospective, Observational Study. Front Pharmacol. 2021;12:598708. https://doi.org/10.3389/fphar.2021.598708
9. Lazăr D. R., Farcaş A. D., Blag C., Neaga A., Zdrenghea M. T. Cardiotoxicity: A Major Setback in Childhood Leukemia Treatment. Dis. Markers. 2021:8828410. https://doi.org/10.1155/2021/8828410
10. Piazzani M., Fioretti F., Gheza M., Lupi L., Madureri A. The possible role of genetic testing in the early identification of patients at increased risk of developing anthracycline-induced cardiotoxicity. European Heart Journal. 2020;41(2). https://doi.org/10.1093/ehjci/ehaa946.0885
11. Vargas-Neri J. L., Carleton B., Ross C. J., Medeiros M., Castañeda-Hernández G., Clark P. Pharmacogenomic study of anthracycline-induced cardiotoxicity in Mexican pediatric patients. Pharmacogenomics. 2022;23(5):291-301. https://doi.org/10.2217/pgs-2021-0144
12. Aminkeng F., Bhavsar A. P., Visscher H., Rassekh S. R., Li Y. [et al.]. A coding variant in RARG confers susceptibility to anthracycline-induced cardiotoxicity in childhood cancer. Nat. Genet. 2015;47:1079-1084. https://doi.org/10.1038/ng.3374
13. Ostroumova O. D., Goloborodova I. V. Drug-induced heart failure (part 2: Mechanisms of development, clinical signs, differential diagnosis, risk factors, treatment and prevention). Bezopasnost i risk farmakoterapii. – Safety and Risk of Pharmacotherapy. 2020;8(2):57-65. (In Russ.). https://doi.org/10.30895/2312-7821-2020-8-2-57-65
14. Magdy T., Burmeister B. T., Burridge P. W. Validating the pharmacogenomics of chemotherapy-induced cardiotoxicity: What is missing? Pharmacol. Ther. 2016;168:113-125. https://doi.org/10.1016/j.pharmthera.2016.09.009
15. Magdy T., Jouni M., Kuo H. H., Weddle C. J., Lyra-Leite D. [et al.]. Identification of Drug Transporter Genomic Variants and Inhibitors that Protect Against Doxorubicin-Induced Cardiotoxicity. Circulation. 2022;145(4):279-294. https://doi.org/10.1161/CIRCULATIONAHA.121.055801
16. Peddi P. F., Fasching P. A., Liu D., Quinaux E., Robert N. J. [et al.]. Genetic Polymorphisms and Correlation with Treatment-Induced Cardiotoxicity and Prognosis in Patients with Breast Cancer. Clin. Cancer Res. 2022;28(9):1854-1862. https://doi.org/10.1158/1078-0432.CCR-21-1762
17. Zhao J., Bian J., Zhao Y., Li Y., Liu B. [et al.]. Pharmacogenetic Aspects of Drug Metabolizing Enzymes and Transporters in Pediatric Medicine: Study Progress, Clinical Practice and Future Perspectives. Paediatr. Drugs. 2023;25(3):301-319. https://doi.org/10.1007/s40272-023-00560-3
18. Paramasivan P., Kumar J. D., Baskaran R., Weng C. F., Padma V. V. Reversal of doxorubicin resistance in lung cancer cells by neferine is explained by nuclear factor erythroid-derived 2-like 2 mediated lung resistance protein down regulation. Cancer Drug Resist. 2020;3(3):647-665. https://doi.org/10.20517/cdr.2019.115
19. Tripaydonis A., Conyers R., Elliott D. A. Pediatric Anthracycline-Induced Cardiotoxicity: Mechanisms, Pharmacogenomics, and Pluripotent Stem-Cell Modeling. Clin. Pharmacol. Ther. 2019;105(3):614-624. https://doi.org/10.1002/cpt.1311
20. Armenian S. H., Ding Y., Mills G., Sun C., Venkataraman K.[et al.]. Genetic susceptibility to anthracycline-related congestive heart failure in survivors of haematopoietic cell transplantation. Br. J. Haematol. 2013;163(2):205-213. https://doi.org/10.1111/bjh.12516
21. Yang X., Li G., Guan M., Bapat A., Dai Q. [et al.]. Potential Gene Association Studies of Chemotherapy-Induced Cardiotoxicity: A Systematic Review and Meta-Analysis. Cardiovasc. Med. 2021;8:651269. https://doi.org/10.3389/fcvm.2021.651269
22. Krajinovic M., Elbared J., Drouin S., Bertout L., Rezgui A. [et al.]. Polymorphisms of ABCC5 and NOS3 genes influence doxorubicin cardiotoxicity in survivors of childhood acute lymphoblastic leukemia. Pharmacogenomics J. 2017;17(1):107. https://doi.org/10.1038/tpj.2016.86
23. Racis M., Sobiczewski W., Stanisławska-Sachadyn A., Wirtwein M., Bluj E. [et al.]. NADPH Oxidase Gene Polymorphism is Associated with Mortality and Cardiovascular Events in 7-Year Follow-Up. J. Clin. Med. 2020;9(5):1475. https://doi.org/10.3390/jcm9051475
24. Cartas-Espinel I., Telechea-Fernández M., Delgado C. M., Barrera A. Á., Cuevas N. S., Riffo-Campos A. L. Novel molecular biomarkers of cancer therapy-induced cardiotoxicity in adult population: a scoping review. ESC Heart Fail. 2022;9(3):1651-1665. https://doi.org/10.1002/ehf2.13735
25. Törnell A., Kiffin R., Haghighi S., Mossberg N., Andersen O. [et al.]. Impact of CYBA genotypes on severity and progression of multiple sclerosis. Eur. J. Neurol. 2022;29(5):1457-1464. https://doi.org/10.1111/ene.15259
26. Gvaldin G. D., Timoshkina T. N., Vladimirova L., Svetitskaya S. Y., Vaschenko V. L. Polymorphisms rs4673 and rs28714259 in predicting anthracycline-mediated cardiotoxicity in patients with breast cancer. Klin. Onkol. 2021;34(6):463-466. https://doi.org/10.48095/ccko2021463
27. Leger K. J., Cushing-Haugen K., Hansen J. A., Fan W., Wendy M. [et al.]. Clinical and Genetic Determinants of Cardiomyopathy Risk among Hematopoietic Cell Transplantation Survivors. Biol. Blood Marrow Transplant. 2016;22(6):1094-1101. https://doi.org/10.1016/j.bbmt.2016.02.017
28. Benzeid R., Gihbid A., Benchekroun N., Bendahhou K., Benna N. E. [et al.]. GSTP1 Ile105Val and GPX1 Pro198Leu Polymorphisms and Their Association with Response to Radiotherapy in Nasopharyngeal Carcinoma Patients. EJMO 2022;6(1):64-72. https://doi.org/10.14744/ejmo.2022.89238
29. Gong L., Luo M., Sun R., Qiu L., Chen C., Luo Z. Significant Association Between XRCC1 Expression and Its rs25487 Polymorphism and Radiotherapy-Related Cancer Prognosis. Front. Oncol. 2021;11:654784. https://doi.org/10.3389/fonc.2021.654784
30. Li P., Zhang X., Deng X., Tao J., Qin C. [et al.]. Pharmacogenetic association between XRCC1 polymorphisms and improved outcomes in bladder cancer patients following intravesical instillation of epirubicin. Int. J. Clin. Exp. Med. 2015;8(7):11167-11173. https://doi.org/10.21037/tau.2016.s143
31. Deng X., Zhang X., Cheng Y., Yang X., Zhao R. [et al.]. XRCC1 polymorphisms associated with survival among Chinese bladder cancer patients receiving epirubicin and mitomycin C. Tumour Biol. 2015;36(6):4591-4596. https://doi.org/10.1007/s13277-015-3104-0
32. Gvaldin D. Yu., Omelchuk E. P., Novikova I. A., Ratieva A. S., Vashchenko L. N. [et al.]. Study of genetic polymorphisms associated with the development of anthracycline-mediated cardiotoxicity in patients with breast cancer. Sovremennyye problemy nauki i obrazovaniya. – Modern problems of science and education. 2019;4:56. (In Russ.). https://doi.org/10.17513/spno.29109
33. Yang J., Gu L., Guo X., Huang J., Chen Z. [et al.]. LncRNA ANRIL Expression and ANRIL Gene Polymorphisms Contribute to the Risk of Ischemic Stroke in the Chinese Han Population. Cell. Mol. Neurobiol. 2018;38(6):1253-1269. https://doi.org/10.1007/s10571-018-0593-6
34. Schneider B. P., Shen F., Gardner L., Radovich M., Li L. [et al.]. Genome-wide association study for anthracycline-induced congestive heart failure. Clin. Cancer Res. 2017;23:43-51. https://doi.org/10.1158/1078-0432.CCR-16-0908
35. Wu X., Shen F., Jiang G., Xue G., Philips S. [et al.]. A non-coding GWAS variant impacts anthracycline-induced cardiotoxic phenotypes in human iPSC-derived cardiomyocytes. Nat. Commun. 2022;13(1):7171. https://doi.org/10.1038/s41467-022-34917-y
36. Gvaldin D. Yu., Timoshkina N. N., Omelchuk E. P., Vashchenko L. N., Ratieva A. S. [et al.]. Association of rs28714259 polymorphism with a risk of early-onset chronic anthracycline-mediated cardiotoxicity in patients with breast cancer. 2020 ASCO Annual Meeting I Сancer prevention, risk reduction, and genetics. J. Clin. Oncol. 2020;38(15). https://doi.org/10.1200/JCO.2020.38.15_suppl.e13504
37. Lavanderos M. A., Cayún J. P., Roco Á., Sandoval C., Cerpa L. [et al.]. Association Study Among Candidate Genetic Polymorphisms and Chemotherapy-Related Severe Toxicity in Testicular Cancer Patients. Front. Pharmacol. 2019;10:206. https://doi.org/10.3389/fphar.2019.00206
38. Jhatial M. A., Naeem S. B., Abbas M., Baloch N. U., Bokhari S. W. [et al.]. Bleomycin-Induced Fulminant Hyperpy- rexia: A Report of Two Cases and Review of Literature. Cureus. 2022;14(9):e29785. https://doi.org/10.7759/cureus.29785
39. Thakkar D. N., Palugulla S., Selvarajan S., Dubashi B. Frequency distribution of BLMH, XPO5 and HFE gene polymorphisms in the South Indian population and their association with Hodgkin Lymphoma. Int. J. Biol. Markers. 2018;1724600818766502. https://doi.org/10.1177/1724600818766502
40. Jóna Á., Miltényi Z., Póliska S., Bálint B. L., Illés Á. Effect
of Bleomycin Hydrolase Gene Polymorphism on Late Pulmonary Complications of Treatment for Hodgkin Lymphoma. PLoS One. 2016;11(6):e0157651. https://doi.org/10.1371/journal.pone.0157651
41. Fung C., Dinh P. Jr., Ardeshir-Rouhani-Fard S., Schaffer K., Fossa S. D., Travis L. B. Toxicities Associated with Cisplatin-Based Chemotherapy and Radiotherapy in Long-Term Testicular Cancer Survivors. Adv. Urol. 2018:8671832. https://doi.org/10.1155/2018/8671832
42. Zhou H., Wan H., Zhu L., Mi Y. Research on the effects of rs1800566 C/T polymorphism of NAD(P)H quinone oxidoreductase 1 gene on cancer risk involves analysis of 43,736 cancer cases and 56,173 controls. Front. Oncol.2022;12:980897. https://doi.org/10.3389/fonc.2022.980897
43. Tossetta G., Fantone S., Goteri G., Giannubilo S. R., Ciavattini A., Marzioni D. The Role of NQO1 in Ovarian Cancer. Int. J. Mol. Sci. 2023;24(9):7839. https://doi.org/10.3390/ijms24097839

Keywords: pharmacogenetics, single nucleotide polymorphisms, anthracyclines, phleomycins, doxorubicin, mitomycin, safety of pharmacotherapy, cardiotoxicity


Founders:
Stavropol State Medical Academy
Pyatigorsk State Research Institute of Balneotherapeutics
Pyatigorsk State Pharmaceutical Academy