logo
Medical news
of the North Caucasus
Scientific journal
Mass media registration certificate dated December 7, 2006.
Series ПИ #ФС 77-26521.
Federal service for surveillance over non-violation of the legislation in the sphere of mass communications and protection of cultural heritage.
ISSN 2073-8137
rus
русский
eng
english

Site search



Correspondence address
310 Mira Street, Stavropol, Russia, 355017

Tel
+7 865 2352511, +7 865 2353229.

E-mail
medvestnik@stgmu.ru

Acute stroke in a patients with COVID-19

[Reviews]
Ekaterina Nikolaevna Kabaeva; Kristina Andreevna Tushova; Natalia Vasilyevna Nozdryukhina; Anton Valeryevich  Ershov;

COVID-19 has remained at the peak of urgent medical and social problems in all countries of the world for more than 2 years. Data on the development of new methods of treatment and prevention of infection is constantly updated, at the same time new strains of the virus appear with an increase in the number of possible complications, a more severe course of coronavirus infection, an increase in morbidity and death in young patients. It has been proven that patients with cardiovascular diseases are at increased risk of a severe course of the disease. COVID-19 is a trigger for acute cardiovascular events in patients in the setting of metabolic disorders and endocrinopathies. A high frequency of the development of multiple organ failure syndrome, often with a fatal outcome, was revealed. At the same time, stroke associated with the coronavirus infection, is one of the most severe forms of pathology. A combination of different mechanisms underlies the development of acute cerebrovascular disorders, among which disorders of the hemostasis system play a key role. This article presents an analysis of current literature data on the features of the development of acute stroke in patients with COVID-19 and also the main risk factors for severe course of both the infection itself and neurological disorders are given.

Download

References:
1. Needham E. J., Chou S. H., Coles A. J., Menon D. K. Neurological Implications of COVID-19 Infections. Neurocrit Care. 2020;32(3):667-671. https://doi.org/10.1007/s12028-020-00978-4
2. Lu R., Zhao X., Li J., Niu P., Yang B. [et al.]. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet. 2020;395(10224):565-574. https://doi.org/10.1016/S0140-6736(20)30251-8
3. Atzrodt C. L., Maknojia I., McCarthy R. D. P., Oldfield T. M., Po J. [et al.]. A guide to Covid-19: A global pandemic caused by the novel coronavirus SARS-COV-2. The FEBS Journal. 2020;287(17):3633-3650.https://doi.org/10.1111/febs.15375
4. Pollard C. A., Morran M. P., Nestor-Kalinoski A. L. The COVID-19 pandemic: A global health crisis. Physiological Genomics. 2020;52(11):549-557. https://doi.org/10.1152/physiolgenomics.00089.2020
5. Chen R., Liang W., Jiang M., Guan W., Zhan C. [et al.]. Medical Treatment Expert Group for COVID-19. Risk factors of fatal outcome in hospitalized subjects with coronavirus disease 2019 from a nationwide analysis in China. Chest. 2020;158(1):97-105. https://doi.org/10.1016/j.chest.2020.04.010
6. Li Y. C., Bai W. Z., Hashikawa T. The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients. J. Med. Virol. 2020;92(6):552-555. https://doi.org/10.1002/jmv.25728
7. Mao L., Jin H., Wang M., Hu Y., Chen S. [et al.]. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurology. 2020;77(6):683. https://doi.org/10.1001/jamaneurol.2020.1127
8. Yaghi S., Ishida K., Torres J., MacGrory B., Raz E. [et al.]. SARS-CoV-2 and Stroke in a New York Healthcare System. Stroke. 2020;51(7):2002-2011. https://doi.org/10.1161/STROKEAHA.120.030335
9. Driggin E., Madhavan M. V., Bikdeli B., Chuich T., Laracy J. [et al.]. Cardiovascular Considerations for Patients, Health Care Workers, and Health Systems During the COVID-19 Pandemic. J. Am. Coll. Cardiol. 2020;75(18):2352-2371. https://doi.org/10.1016/j.jacc.2020.03.031
10. Zhou F., Yu T., Du R., Fan G., Liu Y. [et al.]. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054-1062. https://doi.org/10.1016/S0140-6736(20)30566-3
11. Li Y., Li M., Wang M., Zhou Y., Chang J. [et al.]. Acute cerebrovascular disease following COVID-19: a single center, retrospective, observational study. Stroke Vasc. Neurol. 2020;5(3):279-284. https://doi.org/10.1136/svn-2020-000431
12. Nguyen T. N., Abdalkader M., Jovin T. G., Nogueira R. G., Jadhav A. P. [et al.]. Mechanical Thrombectomy in the Era of the COVID-19 Pandemic: Emergency Preparedness for Neuroscience Teams: A Guidance Statement From the Society of Vascular and Interventional Neurology. Stroke. 2020;51(6):1896-1901. https://doi.org/10.1161/STROKEAHA.120.030100
13. Chen G., Wu D., Guo W., Cao Y., Huang D. [et al.]. Clinical and immunological features of severe and moderate coronavirus disease 2019. J. Clin. Invest. 2020;130(5):2620-2629. https://doi.org/10.1172/JCI137244
14. Remmelink M., De Mendonça R., D’Haene N., De Clercq S., Verocq C. [et al.]. Unspecific post-mortem findings despite multiorgan viral spread in COVID-19 patients. Crit. Care.2020;24(1):495. https://doi.org/10.1186/s13054-020-03218-5
15. Harrison S. L., Fazio-Eynullayeva E., Lane D. A., Underhill P., Lip G. Y. H. Higher Mortality of Ischaemic Stroke Patients Hospitalized with COVID-19 Compared to Historical Controls. Cerebrovasc. Dis. 2021;50(3):326-331. https://doi.org/10.1159/000514137
16. Asadi-Pooya A. A., Simani L. Central nervous system manifestations of COVID-19: A systematic review. J. Neurol. Sci. 2020;413:116832. https://doi.org/10.1016/j.jns.2020.116832
17. Baig A. M., Khaleeq A., Ali U., Syeda H. Evidence of the COVID-19 Virus Targeting the CNS: Tissue Distribution, Host-Virus Interaction, and Proposed Neurotropic Mechanisms. ACS Chem. Neurosci. 2020;11(7):995-998. https://doi.org/10.1021/acschemneuro.0c00122
18. Iba T., Levy J. H., Connors J. M., Warkentin T. E., Thachil J., Levi M. The unique characteristics of COVID-19 coagulopathy. Crit. Care. 2020;24(1):360. https://doi.org/10.1186/s13054-020-03077-0
19. Klok F. A., Kruip M. J. H. A., van der Meer N. J. M., Arbous M. S., Gommers D. A. M. P. J. [et al.]. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb. Res. 2020;191:145-147. https://doi.org/10.1016/j.thromres.2020.04.013
20. Choi Y. H., Laaker C., Hsu M., Cismaru P., Sandor M., Fabry Z. Molecular Mechanisms of Neuroimmune Crosstalk in the Pathogenesis of Stroke. Int. J. Mol. Sci. 2021;22(17):9486. https://doi.org/10.3390/ijms22179486
21. Zayet S., Klopfenstein T., Kovẚcs R., Stancescu S., Hagenkötter B. Acute Cerebral Stroke with Multiple Infarctions and COVID-19, France, 2020. Emerg. Infect. Dis. 2020;26(9):2258-2260. https://doi.org/10.3201/eid2609.201791
22. Shulman J. G., Cervantes-Arslanian A. M. Infectious Etiologies of Stroke. Semin. Neurol. 2019;39(4):482-494. https://doi.org/10.1055/s-0039-1687915
23. Dong M., Zheng J. Letter to the editor: Headline stress disorder caused by Netnews during the outbreak of COVID-19. Health Expect. 2020;23(2):259-260. https://doi.org/10.1111/hex.13055
24. Oxley T. J., Mocco J., Majidi S., Kellner C. P., Shoirah H. [et al.]. Large-Vessel Stroke as a Presenting Feature of Covid-19 in the Young. N. Engl. J. Med. 2020;382(20):e60. https://doi.org/10.1056/NEJMc2009787
25. Divani A. A., Andalib S., Di Napoli M., Lattanzi S., Hussain M. S. [et al.]. Coronavirus Disease 2019 and Stroke: Clinical Manifestations and Pathophysiological Insights. J. Stroke Cerebrovasc. Dis. 2020;29(8):104941. https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.104941
26. Amraei R., Rahimi N. COVID-19, Renin-Angiotensin System and Endothelial Dysfunction. Cells. 2020;9(7):1652. https://doi.org/10.3390/cells9071652
27. Tang X., Zheng F. A review of ischemic stroke in COVID-19: currently known pathophysiological mechanisms. Neurol. Sci. 2022;43:67-79. https://doi.org/10.1007/s10072-021-05679-0
28. Bourgonje A. R., Abdulle A. E., Timens W., Hillebrands J. L., Navis G. J. [et al.]. Angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 and the pathophysiology of coronavirus disease 2019 (COVID-19). J. Pathol. 2020;251(3):228-248. https://doi.org/10.1002/path.5471
29. Wijeratne T., Gillard Crewther S., Sales C., Karimi L. COVID-19 Pathophysiology Predicts That Ischemic Stroke Occurrence Is an Expectation, Not an Exception-A Systematic Review. Front. Neurol. 2021;11:607221. https://doi.org/10.3389/fneur.2020.607221
30. Kakarla V., Kaneko N., Nour M., Khatibi K., Elahi F. [et al.]. Pathophysiologic mechanisms of cerebral endotheliopathy and stroke due to Sars-CoV-2. J. Cereb. Blood Flow. Metab. 2021;41(6):1179-1192. https://doi.org/10.1177/0271678X20985666
31. Berlińska A., Świątkowska-Stodulska R., Sworczak K. Old Problem, New Concerns: Hypercortisolemia in the Time of COVID-19. Front. Endocrinol. (Lausanne). 2021;12:711612. https://doi.org/10.3389/fendo.2021.711612
32. Iwasaki M., Saito J., Zhao H., Sakamoto A., Hirota K., Ma D. Inflammation Triggered by SARS-CoV-2 and ACE2 Augment Drives Multiple Organ Failure of Severe COVID-19: Molecular Mechanisms and Implications. Inflammation. 2021;44(1):13-34. https://doi.org/10.1007/s10753-020-01337-3
33. Kaushik P., Kaushik M., Parveen S., Tabassum H., Parvez S. Cross-Talk Between Key Players in Patients with COVID-19 and Ischemic Stroke: A Review on Neurobiological Insight of the Pandemic. Mol. Neurobiol.2020;57(12):4921-4928. https://doi.org/10.1007/s12035-020-02072-4
34. Young M. J., Clyne C. D., Chapman K. E. Endocrine aspects of ACE2 regulation: RAAS, steroid hormones and SARS-CoV-2. J. Endocrinol. 2020;247(2):R45-R62. https://doi.org/10.1530/JE-20-0260
35. Tan T., Khoo B., Mills E. G., Phylactou M., Patel B. [et al.]. Association between high serum total cortisol concentrations and mortality from COVID-19. Lancet Diabetes Endocrinol. 2020;8(8):659-660. https://doi.org/10.1016/S2213-8587(20)30216-3
36. Loganathan S., Kuppusamy M., Wankhar W., Gurugubelli K. R., Mahadevappa V. H. [et al.]. Angiotensin-converting enzyme 2 (ACE2): COVID 19 gate way to multiple organ failure syndromes. Respir. Physiol. Neurobiol. 2021;283:103548. https://doi.org/10.1016/j.resp.2020.103548
37. Pal R., Banerjee M., Bhadada S. K. Cortisol concentrations and mortality from COVID-19. Lancet Diabetes Endocrinol.2020;8(10):809. https://doi.org/10.1016/S2213-8587(20)30304-1
38. Saba L., Gerosa C., Fanni D., Marongiu F., La Nasa G. [et al.]. Molecular pathways triggered by COVID-19 in different organs: ACE2 receptor-expressing cells under attack? A review. Eur. Rev. Med. Pharmacol. Sci. 2020;24(23):12609-12622. https://doi.org/10.26355/eurrev_202012_24058
39. Grasselli G., Tonetti T., Protti A., Langer T., Girardis M. [et al.]. Pathophysiology of COVID-19-associated acute respiratory distress syndrome: a multicentre prospective observational study. Lancet Respir. Med. 2020;8(12):1201-1208. https://doi.org/10.1016/S2213-2600(20)30370-
40. Yuki K., Fujiogi M., Koutsogiannaki S. COVID-19 pathophysiology: A review. Clin. Immunol. 2020;215:108427. https://doi.org/10.1016/j.clim.2020.108427
41. Li H., Liu Z., Ge J. Scientific research progress of COVID-19/SARS-CoV-2 in the first five months. J. Cell. Mol. Med. 2020;24(12):6558-6570. https://doi.org/10.1111/jcmm.15364
42. Hosoki K., Chakraborty A., Sur S. Molecular mechanisms and epidemiology of COVID-19 from an allergist’s perspective. J. Allergy Clin. Immunol. 2020;146(2):285-299. https://doi.org/10.1016/j.jaci.2020.05.033
43. Caricchio R., Gallucci M., Dass C., Zhang X., Gallucci S. [et al.]. Temple University COVID-19 Research Group. Preliminary predictive criteria for COVID-19 cytokine storm. Ann. Rheum. Dis. 2021;80(1):88-95. https://doi.org/10.1136/annrheumdis-2020-218323
44. Liu J., Li S., Liu J., Liang B., Wang X. [et al.]. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. EBioMedicine. 2020;55:102763. https://doi.org/10.1016/j.ebiom.2020.102763
45. Yang A. P., Li H. M., Tao W. Q., Yang X. J., Wang M. [et al.]. Infection with SARS-CoV-2 causes abnormal laboratory results of multiple organs in patients. Aging (Albany NY). 2020;12(11):10059-10069.
46. Nile S. H., Nile A., Qiu J., Li L., Jia X., Kai G. COVID-19: Pathogenesis, cytokine storm and therapeutic potential of interferons. Cytokine Growth Factor Rev. 2020;53:66-70. https://doi.org/10.1016/j.cytogfr.2020.05.002
47. Asakura H., Ogawa H. COVID-19-associated coagulopathy and disseminated intravascular coagulation. Int. J. Hematol. 2021;113(1):45-57. https://doi.org/10.1007/s12185-020-03029-y
48. Agbuduwe C., Basu S. Haematological manifestations of COVID-19: From cytopenia to coagulopathy. Eur. J. Haematol. 2020;105(5):540-546. https://doi.org/10.1111/ejh.13491
49. Castro R. A., Frishman W. H. Thrombotic Complications of COVID-19 Infection: A Review. Cardiol. Rev. 2021;29(1):43-47. https://doi.org/10.1097/CRD.0000000000000347
50. Miesbach W., Makris M. COVID-19: Coagulopathy, Risk of Thrombosis, and the Rationale for Anticoagulation. Clin. Appl. Thromb. Hemost. 2020;26:1076029620938149. https://doi.org/10.1177/1076029620938149
51. Soy M., Keser G., Atagündüz P., Tabak F., Atagündüz I., Kayhan S. Cytokine storm in COVID-19: pathogenesis and overview of anti-inflammatory agents used in treatment. Clin. Rheumatol. 2020;39(7):2085-2094. https://doi.org/10.1007/s10067-020-05190-5
52. Bradley B. T., Maioli H., Johnston R., Chaudhry I., Fink S. L. [et al.]. Histopathology and ultrastructural findings of fatal COVID-19 infections in Washington State: a case series. Lancet. 2020;396(10247):320-332. https://doi.org/10.1016/S0140-6736(20)31305-2
53. Terpos E., Ntanasis-Stathopoulos I., Elalamy I., Kastritis E., Sergentanis T. N. [et al.]. Hematological findings and complications of COVID-19. Am. J. Hematol. 2020;95(7):834-847. https://doi.org/10.1002/ajh.25829
54. Alhazzani W., Møller M. H., Arabi Y. M., Loeb M., Gong M. N. [et al.]. Surviving Sepsis Campaign: Guidelines on the Management of Critically Ill Adults with Coronavirus Disease 2019 (COVID-19). Crit. Care Med.2020;48(6):e440-e469. https://doi.org/10.1097/CCM.0000000000004363
55. Ahmed S., Zimba O., Gasparyan A. Y. Thrombosis in Coronavirus disease 2019 (COVID-19) through the prism of Virchow’s triad. Clin. Rheumatol. 2020;39(9):2529-2543. https://doi.org/10.1007/s10067-020-05275-1
56. Paniz-Mondolfi A., Bryce C., Grimes Z., Gordon R. E., Reidy J. [et al.]. Central nervous system involvement by severe acute respiratory syndrome coronavirus-2 (SARSCoV-2). J. Med. Virol. 2020;92(7):699-702. https://doi.org/10.1002/jmv.25915
57. Kipshidze N., Dangas G., White C. J., Kipshidze N., Siddiqui F. [et al.]. Viral Coagulopathy in Patients With COVID-19: Treatment and Care. Clin. Appl. Thromb. Hemost. 2020;26:1076029620936776. https://doi.org/10.1177/1076029620936776
58. Галстян Г. М. Коагулопатия при COVID-19. Пульмонология. 2020;30(5):645-657. [Galstjan G. M. Coagulopathy in COVID-19. Pul’monologija – Russian Pulmonology Journal. 2020;30(5):645-657. (In Russ.)]. https://doi.org/10.18093/0869-0189-2020-30-5-645-657
59. Caillon A., Trimaille A., Favre J., Jesel L., Morel O., Kauffenstein G. Role of neutrophils, platelets, and extracellular vesicles and their interactions in COVID19-associated thrombopathy. J. Thromb. Haemost. 2022;20(1):17-31. https://doi.org/10.1111/jth.15566
60. Tang N., Li D., Wang X., Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J. Thromb. Haemost. 2020;18(4):844-847. https://doi.org/10.1111/jth.14768

Keywords: cerebral stroke, COVID-19, complications, multiple organ failure


Founders:
Stavropol State Medical Academy
Pyatigorsk State Research Institute of Balneotherapeutics
Pyatigorsk State Pharmaceutical Academy