logo
Medical news
of the North Caucasus
Scientific journal
Mass media registration certificate dated December 7, 2006.
Series ПИ #ФС 77-26521.
Federal service for surveillance over non-violation of the legislation in the sphere of mass communications and protection of cultural heritage.
ISSN 2073-8137
rus
русский
eng
english

Site search



Correspondence address
310 Mira Street, Stavropol, Russia, 355017

Tel
+7 865 2352511, +7 865 2353229.

E-mail
medvestnik@stgmu.ru

E-cadherin and the gingival epithelial barrier

[Reviews]
Ekaterina Mikhailovna Speranskaya; Natalia Nikolaevna Golubtsova; Lyubov Rustemovna Mukhamedzhanova; Evgeny Vasilyevich Moskvichev;

The analytical review highlights the issues of the structure of the gingival epithelium, intercellular contacts of epithelial cells, as well as the effect of a complex of exogenous and endogenous factors on the expression of the marker of intercellular adhesion (E-cadherin). A decrease in the expression of the E-cadherin molecule leads to inhibition of the gingival epithelial barrier and to the development of inflammatory and destructive periodontal diseases, which determines the importance of studying the effect of exogenous and endogenous factors on changes in the intercellular contacts of epithelial cells.

Download

References:
1. Buskermolen J. K., Reijnders C. M., Spiekstra S. W., Steinberg T., Kleverlaan C. J. [et al.]. Development of a Full-Thickness Human Gingiva Equivalent Constructed from Immortalized Keratinocytes and Fibroblasts. Tissue Eng. Part. C:Methods. 2016;22(8):781-791. https://doi.org/10.1089/ten.TEC.2016.0066
2. Abe-Yutori M., Chikazawa T., Shibasaki K., Murakami S. Decreased expression of E-cadherin by Porphyromonas gingivalis-lipopolysaccharide attenuates epithelial barrier function. J. Periodontal Res. 2017;52(1):42-50. https://doi.org/10.1111/jre.12367
3. Fujita T., Yoshimoto T., Kajiya M., Ouhara K., Matsuda S. [et al.]. Regulation of defensive function on gingival epithelial cells can prevent periodontal disease. Jpn. Dent. Sci. Rev. 2018;54(2):66-75. https://doi.org/10.1016/j.jdsr.2017.11.003
4. Yamada M., Takahashi N., Matsuda Y., Sato K., Yokoji M. [et al.]. A bacterial metabolite ameliorates periodontal pathogen-induced gingival epithelial barrier disruption via GPR40 signaling. Sci. Rep. 2018;8(1):9008. https://doi.org/10.1038/s41598-018-27408-y
5. Belibasakis G. N., Kast J. I., Thurnheer T., Akdis C. A., Bostanci N. The expression of gingival epithelial junctions in response to subgingival biofilms. Virulence. 2015;6(7);704-709. https://doi.org/10.1080/21505594.2015.1081731
6. Zheng X., Tizzano M., Redding K., He J., Peng X. [et al.]. Gingival solitary chemosensory cells are immune sentinels for periodontitis. Nat. Commun. 2019;10(1):4496. https://doi.org/10.1038/s41467-019-12505-x
7. Jin C., Lee G., Oh C., Kim H. J., Kim H. M. Substrate roughness induces the development of defective E-cadherin junctions in human gingival keratinocytes. J. Periodontal Implant Sci. 2017;47(2):116-131. https://doi.org/10.5051/jpis.2017.47.2.116
8. Groeger S., Meyle J. Oral Mucosal Epithelial Cells. Front. Immunol. 2019;10:208. https://doi.org/10.3389/fimmu.2019.00208
9. Lee G., Kim H. J., Kim H. M. RhoA-JNK Regulates the E-Cadherin Junctions of Human Gingival Epithelial Cells. J. Dent. Res. 2016;95(3):284-291. https://doi.org/10.1177/0022034515619375
10. Jiang Q., Yu Y., Ruan H., Luo Y., Guo X. Morphological and functional characteristics of human gingival junctional epithelium. BMC. Oral. Health.2014;14(30). https://doi.org/10.1186/1472-6831-14-30
11. Oh C., Kim H. J., Kim H. M. Vitamin D maintains E-cadherin intercellular junctions by downregulating MMP-9 production in human gingival keratinocytes treated by TNF-α. J. Periodontal. Implant. Sci. 2019;49(5):270-286. https://doi.org/10.5051/jpis.2019.49.5.270
12. Bhargava A., Rastogi P., Lal N., Singhal R., Khatoon S., Ali Mahdi A. Relationship between VITAMIN D and chronic periodontitis. J. Oral. Biol. Craniofac. Res. 2019;9(2):177- 179. https://doi.org/10.1016/j.jobcr.2018.07.001
13. Kaufhold S., Bonavida B. Central role of Snail1 in the regulation of EMT and resistance in cancer: a target for therapeutic intervention. J. Exp. Clin. Cancer Res. 2014;33(1):62. https://doi.org/10.1186/s13046-014-0062-0
14. Zasadkevich Y. M., Brilliant A. A., Sazonov S. V. Role of cadherins in health and in developing breast cancer. Arkh. Patol. 2015;77(3):57-64. https://doi.org/10.17116/patol201577357-64
15. Wong S. H. M., Fang C. M., Chuah L. H., Leong C. O., Ngai S. C. E-cadherin: its dysregulation in carcinogenesis and clinical implications. Crit. Rev. Oncol. Hematol. 2018;121:11-22. https://doi.org/10.1016/j.critrevonc.2017.11.010
16. Bai Y., Sha J., Kanno T. The Role of Carcinogenesis-Related Biomarkers in the Wnt Pathway and Their Effects on Epithelial-Mesenchymal Transition (EMT) in Oral Squamous Cell Carcinoma. Cancers (Basel). 2020;12(3):555. https://doi.org/10.3390/cancers12030555
17. de Agustín-Durán D., Mateos-White I., Fabra-Beser J., GilSanz C. Stick around: Cell-Cell Adhesion Molecules during Neocortical Development. Cells. 2021;10(1):118. https://doi.org/10.3390/cells10010118
18. Ho J., Camilli G., Griffiths J. S., Richardson J. P., Kichik N., Naglik J. R. Candida albicans and candidalysin in inflammatory disorders and cancer. Immunology. 2021;162(1):11- 16. https://doi.org/10.1111/imm.13255
19. Rajwar Y. C., Jain N., Bhatia G., Sikka N., Garg B., Walia E. Expression and Significance of Cadherins and Its Subtypes in Development and Progression of Oral Cancers: A Review. Clin. Diagn. Res. 2015;9(5):ZE05-ZE7. https://doi.org/10.7860/JCDR/2015/11964.5907
20. Arora H., Madapusi B. T., Ramamurti A., Narasimhan M., Periasamy S., Rao S. R. Immunohistochemical Localization of Epithelial Mesenchymal Transition Markers in Cyclosporine A Induced Gingival Overgrowth. J. Clin. Diagn. Res. 2016;10(8):48-52. https://doi.org/10.7860/JCDR/2016/20808.8271
21. Mège R. M., Ishiyama N. Integration of Cadherin Adhesion and Cytoskeleton at Adherens Junctions. Cold. Spring. Harb. Perspect. Biol. 2017;9(5):a028738. https://doi.org/10.1101/cshperspect.a028738
22. Mnikhovich M. V., Vernigorodsky S. V., Bun’kov K. V. Epithelial-mesenchymal transition, transdifferentiation, reprogramming and metaplasia: modern view on the problem. Morfologicheskiye vedomosti. – Morphological newsletter. 2017;25(3):14- 21. (In Russ.). https://doi.org/10.20340/mv-mn.17(25).03.14-21
23. Scanlon C. S., Van Tubergen E. A., Inglehart R. C., D’Silva N. J. Biomarkers of epithelial-mesenchymal transition in squamous cell carcinoma. J. Dent. Res. 2013;92(2):114- 121. https://doi.org/10.1177/0022034512467352
24. Matsui S., Zhou L., Nakayama Y., Mezawa M., Kato A. [et al.]. MiR-200b attenuates IL-6 production through IKKβ and ZEB1 in human gingival fibroblasts. Inflamm. Res. 2018;67(11-12):965-973. https://doi.org/10.1007/s00011-018-1192-1
25. Liu P. F., Kang B. H., Wu Y. M., Sun J. H., Yen L. M. [et al.]. Vimentin is a potential prognostic factor for tongue squamous cell carcinoma among five epithelial-mesenchymal transition-related proteins. PLoS One. 2017;12(6):e0178581. https://doi.org/10.1371/journal.pone.0178581
26. Lee J., Roberts J. S., Atanasova K. R., Chowdhury N., Han K., Yilmaz Ö. Human Primary Epithelial Cells Acquire an Epithelial-Mesenchymal-Transition Phenotype during Long-Term Infection by the Oral Opportunistic Pathogen, Porphyromonas gingivalis. Front. Cell. Infect. Microbiol. 2017;7:493. https://doi.org/10.3389/fcimb.2017.00493
27. Li X., Zhang S., Zhang Z., Guo W., Chen G., Tian W. Development of immortalized Hertwig’s epithelial root sheath cell lines for cementum and dentin regeneration. Stem. Cell. Res. Ther. 2019;10(1):3. https://doi.org/10.1186/s13287-018-1106-8
28. Itaya S., Oka K., Ogata K., Tamura S., Kira-Tatsuoka M. [et al.]. Hertwig’s epithelial root sheath cells contribute to formation of periodontal ligament through epithelial-mesenchymal transition by TGF-β. Biomed. Res. 2017;38(1):61- 69. https://doi.org/10.2220/biomedres.38.61
29. Xiong J., Mrozik K., Gronthos S., Bartold P. M. Epithelial cell rests of Malassez contain unique stem cell populations capable of undergoing epithelial-mesenchymal transition. Stem. Cells. Dev. 2012;21(11):2012-2025. https://doi.org/10.1089/scd.2011.0471
30. Yost S., Duran-Pinedo A. E., Krishnan K., Frias-Lopez J. Potassium is a key signal in host-microbiomedysbiosis in periodontitis. PLoS Pathog. 2017;13(6):e1006457. https://doi.org/10.1371/journal.ppat.1006457
31. Walkenhorst M. S., Reyes L., Perez G., Progulske-Fox A., Brown M. B., Phillips P. L. A Uniquely Altered Oral Microbiome Composition Was Observed in Pregnant Rats With Porphyromonas gingivalis Induced Periodontal Disease. Front. Cell. Infect. Microbiol. 2020;10:92. https://doi.org/10.3389/fcimb.2020.00092
32. Abdulkareem A. A., Shelton R. M., Landini G., Cooper P. R., Milward M. R. Periodontal pathogens promote epithelial-mesenchymal transition in oral squamous carcinoma cells in vitro. Cell. Adh. Migr. 2018;12(2):127-137. https://doi.org/10.1080/19336918.2017.1322253
33. Chopra A., Bhat S. G., Sivaraman K. Porphyromonas gingivalis adopts intricate and unique molecular mechanisms to survive and persist within the host: a critical update. J. Oral Microbiol. 12(1):1801090. https://doi.org/10.1080/20002297.2020.1801090.
34. Kosten I. J., Buskermolen J. K., Spiekstra S. W., de Gruijl T. D., Gibbs S. Gingiva Equivalents Secrete Negligible Amounts of Key Chemokines Involved in Langerhans Cell Migration Compared to Skin Equivalents. J. Immunol. Res. 2015;627125. https://doi.org/10.1155/2015/627125
35. Taguchi H., Aono Y., Kawato T., Asano M., Shimizu N., Saigusa T. Intragingival injection of Porphyromonas gingivalis-derived lipopolysaccharide induces a transient increase in gingival tumour necrosis factor-α, but not interleukin-6, in anaesthetised rats. Int. J. Oral. Sci. 2015;7(3):155-160. https://doi.org/10.1038/ijos.2015.9
36. Kim W. H., An H. J., Kim J. Y., Gwon M. G., Gu H. [et al.]. Anti-Inflammatory Effect of Melittin on Porphyromonas Gingivalis LPS-Stimulated Human Keratinocytes. Molecules. 2018;23(2):332. https://doi.org/10.3390/molecules23020332
37. Ouhara K., Munenaga S., Kajiya M., Takeda K., Matsuda S. [et al.]. The induced RNA-binding protein, HuR, targets 3’-UTR region of IL-6 mRNA and enhances its stabilization in periodontitis. Clin. Exp. Immunol. 2018;192(3):325-336. https://doi.org/10.1111/cei.13110
38. Bugueno I. M., Batool F., Keller L., Kuchler-Bopp S., Benkirane-Jessel N., Huck O. Porphyromonas gingivalis bypasses epithelial barrier and modulates fibroblastic inflammatory response in an in vitro 3D spheroid model. Sci. Rep. 2018;8(1):14914. https://doi.org/10.1038/s41598-018-33267-4
39. Khammissa R. A. G., Ballyram R., Jadwat Y., Fourie J., Lemmer J., Feller L. Vitamin D Deficiency as It Relates to Oral Immunity and Chronic Periodontitis. Int. J. Dent. 2018;2018:7315797. https://doi.org/10.1155/2018/7315797
40. Liu K., Han B., Hou J., Zhang J., Su J., Meng H. Expression of vitamin D 1α-hydroxylase in human gingival fibroblasts in vivo. PeerJ. 2021;9:e10279. https://doi.org/10.7717/peerj.10279
41. Ghinassi B., D’Addazio G., Di Baldassarre A., Femminella B., Di Vincenzo G. [et al.]. Immunohistochemical Results of Soft tissues Around a New Implant Healing-Abutment Surface: A Human Study. J. Clin. Med. 2020;9(4):E1009. https://doi.org/10.3390/jcm9041009
42. Ehrmann E., Medioni E., Brulat-Bouchard N. Finishing and polishing effects of multiblade burs on the surface texture of 5 resin composites: microhardness and roughness testing. Restor. Dent. Endod. 2018;44(1):e1. https://doi.org/10.5395/rde.2019.44.e1
43. Abreu L. G., Paiva S. M., Pretti H., Lages E. M., Júnior J. B., Ferreira R. A. Comparative Study of the Effect of Acid Etching on Enamel Surface Roughness between Pumiced and Non-pumiced Teeth. J. Int. Oral Health. 2015;7(9):1-6.
44. Yaghini J., Naghsh N., Attaei E., Birang R., Birang E. Root Surface Roughness After Scaling and Root Planing with Er:YAG Laser Compared to Hand and Ultrasonic Instruments by Profilometry. J. Dent. (Tehran). 2015;12(12):899-905.
45. Solís Moreno C., Santos A., Nart J., Levi P., Velásquez A., Sanz Moliner J. Evaluation of root surface microtopography following the use of four instrumentation systems by confocal microscopy and scanning electron microscopy: an in vitro study. J. Periodontal Res. 2012;47:608-615. https://doi.org/10.1111/j.1600-0765.2012.01473.x
46. Collins C., Denisin A. K., Pruitt B. L., Nelson W. J. Changes in E-cadherin rigidity sensing regulate cell adhesion. Proc. Natl. Acad. Sci. USA. 2017;114(29):E5835-E5844. https://doi.org/10.1073/pnas.1618676114

Keywords: E-cadherin, gum epithelial cells, intercellular contacts, TNF-α, Porphyromonas gingivalis, vitamin D, antioxidants


Founders:
Stavropol State Medical Academy
Pyatigorsk State Research Institute of Balneotherapeutics
Pyatigorsk State Pharmaceutical Academy