logo
Medical news
of the North Caucasus
Scientific journal
Mass media registration certificate dated December 7, 2006.
Series ПИ #ФС 77-26521.
Federal service for surveillance over non-violation of the legislation in the sphere of mass communications and protection of cultural heritage.
ISSN 2073-8137
rus
русский
eng
english

Site search



Correspondence address
310 Mira Street, Stavropol, Russia, 355017

Tel
+7 865 2352511, +7 865 2353229.

E-mail
medvestnik@stgmu.ru

Pathology of the enteric nervous system in Parkinson’s disease

[Reviews]
Evgeniia Pimenova; Marianna Igorevna Ruskina; Sergey Sergeevich Petrikov; Ganipa Ramazanovich Ramazanov; Olesya Bogdanovna Zavaliy;

The enteral nervous system is an autonomous system of the gastrointestinal tract (GIT). The common structure and mediators of the enteral and central nervous systems suggest common mechanisms of disease development. The article presents data on the state of the enteral nervous system in patients with Parkinson’s disease (PD). As is known, non-motor symptoms of PD, such as olfactory and gastrointestinal disorders (more often constipation), may appear several years or decades before the development of motor symptoms. Violation of intestinal peristalsis in patients with PD can be explained by damage to the nerve ganglion plexuses and glia of the intramural nervous system. An important role in the pathogenesis of PD belongs to the presynaptic abnormal protein alpha-synuclein involved in axonal transport. According to the theory of Heiko Braak, alpha synuclein inclusions (components of Levi’s bodies) arise on the periphery, including in the enteral nervous system of the gastrointestinal tract, and then spread through the vagus nerve to the structures of the midbrain. Research in this direction can help in the early diagnosis of PD.

Download

References:
1. Schneider S., Wright C. M., Heuckeroth R. O. Unexpected roles for the second brain: enteric nervous system as master regulator of bowel function. Annual Review of Physiology. 2019;81:235-259. https://doi.org/10.1146/annurev-physiol-021317-121515
2. Furness J. B., Callaghan B. P., Rivera L. R., Cho H. J. The enteric nervous system and gastrointestinal innervation: integrated local and central control. Advances in Experimental Medicine and Biology. 2014;817:39-71. https://doi.org/10.1007/978-1-4939-0897-4_3
3. Rao M., Gershon M. D. The bowel and beyond: the enteric nervous system in neurological disorders. Nature Reviews Gastroenterology & Hepatology. 2016;13(9):517-528. https://doi.org/10.1038/nrgastro.2016.107
4. de Baat C., van Stiphout M. A. E., Lobbezoo F., van Dijk K. D., Berendse H. W. Ziekte van Parkinson: pathogenese, etiologie, symptomen, diagnostiek en beloop. Nederlands Tijdschrift voor Tandheelkunde. 2018;125(10):509-515. https://doi.org/10.5177/ntvt.2018.10.18176
5. Durcan R., Wiblin L., Lawson R. A., Khoo T. K., Yarnall A. J. [et al.]. Prevalence and duration of non-motor symptoms in prodromal Parkinson’s disease. European Journal of Neurology. 2019;26(7):979-985. https://doi.org/10.1111/ene.13919
6. Zheng H., Shi C., Luo H., Fan L., Yang Z. [et al.]. α-Synuclein in Parkinson’s disease: does a prion-like mechanism of propagation from periphery to the brain play a role? The Neuroscientist. 2020. Available at: https://journals.sagepub.com/doi/10.1177/1073858420943180. Accessed May 10, 2021.
7. Chahine L. M., Beach T. G., Brumm M. C., Adler C. H., Coffey C. S. [et al.]. In vivo distribution of α-synuclein in multiple tissues and biofluids in Parkinson disease. Neurology. 2020;95(9):1267-1284. https://doi.org/10.1212/WNL.0000000000010404
8. Braak H., Del Tredici K. Neuropathological staging of brain pathology in sporadic Parkinson’s disease: separating the wheat from the chaff. Journal of Parkinson’s Disease. 2017;7(1):71-85. https://doi.org/10.3233/JPD-179001
9. Travagli R. A., Browning K. N., Camilleri M. Parkinson disease and the gut: new insights into pathogenesis and clinical relevance. Nature Reviews Gastroenterology & Hepatology. 2020;17:673-685. https://doi.org/10.1038/s41575-020-0339-z
10. Chai X. Y., Diwakarla S., Pustovit R., Mcquade R., Natale M. [et al.]. Investigation of nerve pathways mediating colorectal dysfunction in Parkinson’s disease model produced by lesion of nigrostriatal dopaminergic neurons. Neurogastroenterology & Motility. 2020;32(9):13893. Available at: https://onlinelibrary.wiley.com/doi/10.1111/nmo.13893. Accessed May 10, 2021.
11. Vergnolle N., Cirillo C. Neurons and glia in the enteric nervous system and epithelial barrier function. Physiology. 2018;33(4):269-280. https://doi.org/10.1152/physiol.00009.2018
12. Puri P., Holschneider А. M. Hirschsprung’s Disease and Allied Disorders. Berlin: Springer, 2019.
13. Tysnes O. B., Storstein A. Epidemiology of Parkinson’s disease. Journal of Neural Transmission. 2017;124(8):901-905. https://doi.org/10.1007/s00702-017-1686-y
14. Titova N. V., Chaudhuri K. R. Non-motor symptoms of Parkinson’s disease: the submerged part of the iceberg. Annaly klinicheskoy i eksperimentalnoy nevrologii. – Annals of Clinical and Experimental Neurology. 2017;11(4):5-18. (In Russ.). https://doi.org/10.18454/ACEN.2017.4.1
15. van Wamelen D. J., Martinez-Martin P., Weintraub D., Schrag A., Antonini A. [et al.]. The Non-motor symptoms scale in Parkinson’s disease: validation and use. Acta Neurologica Scandinavica. 2021;143(1):3-12. https://doi.org/10.1111/ane.13336
16. Katunina E., Titova N. The epidemiology of nonmotor symptoms in PD (cohort and other studies). International Review of Neurobiology. 2017;33:91-110. https://doi.org/10.1016/bs.irn.2017.05.012
17. Pont-Sunyer C., Hotter A., Gaig C., Seppi K., Compta Y. [et al.]. The onset of nonmotor symptoms in Parkinson’s disease (The ONSET PD Study). Movement Disorders. 2015;30(2):229-237. https://doi.org/10.1002/mds.26077
18. Lubomski M., Davis R. L., Sue C. M. Gastrointestinal dysfunction in Parkinson’s disease. Journal of Neurology. 2020;267(5):1377-1388. https://doi.org/10.1007/s00415-020-09723-5
19. Surmeier D. J., Sulzer D. The pathology roadmap in Parkinson disease. Prion. 2013;7:85-91. https://doi.org/10.4161/pri.23582
20. Holdorff B. Centenary of Tretiakoff’s thesis on the morphology of Parkinson’s disease, evolved on the grounds of encephalitis lethargica pathology. Journal of the History of the Neurosciences. 2019;28(4):387-398. https://doi.org/10.1080/0964704X.2019.1622361
21. Marsal-García L., Urbizu A., Arnaldo L., Campdelacreu J., Vilas D. [et al.]. Expression levels of an alpha-synuclein transcript in blood may distinguish between early dementia with Lewy bodies and Parkinson’s Disease. International Journal of Molecular Sciences. 2021;22(2):725. https://doi.org/10.3390/ijms22020725
22. Fouka M., Mavroeidi P., Tsaka G., Xilouri M. In search of effective treatments targeting α-synuclein toxicity in synucleinopathies: pros and cons. Frontiers in Cell and Developmental Biology. 2020;8:894. https://doi.org/10.3389/fcell.2020.559791
23. Sulzer D., Edwards R. H. The physiological role of α-synuclein and its relationship to Parkinson’s disease. Journal of Neurochemistry. 2019;150(5):475-486. https://doi.org/10.1111/jnc.14810
24. Breydo L., Wu J. W., Uversky V. N. Alpha-synuclein misfolding and Parkinson’s disease. Biochimica et Biophysica Acta. 2012;1822(2):261-285. https://doi.org/10.1016/j.bbadis.2011.10.002
25. Grassi D., Diaz-Perez N., Volpicelli-Daley L. A., Lasmézas C. I. Pα-syn mitotoxicity is linked to MAPK activation and involves tau phosphorylation and aggregation at the mitochondria. Neurobiology of disease. 2019;124:248- 262. https://doi.org/10.1016/j.nbd.2018.11.015
26. Rietdijk C. D., Perez-Pardo P., Garssen J., van Wezel R. J., Kraneveld A. D. Exploring Braak’s hypothesis of Parkinson’s disease. Frontiers in Neurology. 2017;8:37. https://doi.org/10.3389/fneur.2017.00037
27. Ruffmann C., Woulfe J. M., Visanji N. P., Parkkinen L., Gray M. T. [et al.]. Colonic mucosal α-synuclein lacks specificity as a biomarker for Parkinson disease. Neurology. 2015;85(9):834-835. https://doi.org/10.1212/WNL.0000000000001904
28. Mendes A., Gonçalves A., Vila-Chã N., Moreira I., Fernandes J. [et al.]. Appendectomy may delay Parkinson’s disease onset. Movement Disorders. 2015;30(10):1404- 1407. https://doi.org/10.1002/mds.26311
29. Pan-Montojo F., Schwarz M., Winkler C., Arnhold M., O’Sullivan G. A. [et al.]. Environmental toxins trigger PDlike progression via increased alpha-synuclein release from enteric neurons in mice. Scientific reports. 2012;2(1):1-12. https://doi.org/10.1038/srep00898
30. Freire C., Koifman S. Pesticide exposure and Parkinson’s disease: epidemiological evidence of association. Neurotoxicology. 2012;33(5):947-971. https://doi.org/10.1016/j.neuro.2012.05.011
31. Svensson E., Horváth-Puhó E., Thomsen R., Djurhuus J., Pedersen L. [et al.]. Vagotomy and subsequent risk of Parkinson’s disease. Annals of Neurology. 2015;78:522-529. https://doi.org/10.1002/ana.24448
32. Holmqvist S., Chutna O., Bousset L., Aldrin-Kirk P., Li W. [et al.]. Direct evidence of Parkinson pathology spread from the gastrointestinal tract to the brain in rats. Acta Neuropathologica. 2014;128(6):805-820. https://doi.org/10.1007/s00401-014-1343-6
33. Roberts R. F., Wade-Martins R., Alegre-Abarrategui J. Direct visualization of alpha-synuclein oligomers reveals previously undetected pathology in Parkinson’s disease brain. Brain. 2015;138(6):1642-1657. https://doi.org/10.1093/brain/awv040
34. Kuebler L., Buss S., Leonov A., Ryazanov S., Schmidt F. [et al.]. [11C]MODAG-001-towards a PET tracer targeting α-synuclein aggregates. European journal of nuclear medicine and molecular imaging. 2020. Available at: https://link.springer.com/content/pdf/10.1007/s00259-020-05133-x. Accessed May 10, 2021.
35. Thomsen M. B., Ferreira S. A., Schacht A. C., Jacobsen J., Simonsen M. [et al.]. PET imaging reveals early and progressive dopaminergic deficits after intra-striatal injection of preformed alpha-synuclein fibrils in rats. Neurobiology of disease. 2021;149:105229. https://doi.org/10.1016/j.nbd.2020.105229
36. Molsberry S., Bjornevik K., Hughes K. C., Healy B., Schwarzschild M., Ascherio A. Diet pattern and prodromal features of Parkinson’s disease. Neurology. 2020;5(15):e2095-e2108. https://doi.org/10.1212/WNL.0000000000010523
37. Maraki M. I., Yannakoulia M., Stamelou M., Stefanis L., Xiromerisiou G. [et al.]. Mediterranean diet adherence is related to reduced probability of prodromal Parkinson’s disease. Movement Disorders. 2019;34(1):48-57. https://doi.org/10.1002/mds.27489
38. Marras C., Beck J. C., Bower J. H., Roberts E., Ritz B. [et al.]. Prevalence of Parkinson’s disease across North America. NPJ Parkinson’s Disease. 2018;4(1):1-7. https://doi.org/10.1038/s41531-018-0058-0
39. Krüger R., Klucken J., Weiss D., Tönges L., Kolber P. [et al.]. Classification of advanced stages of Parkinson’s disease: translation into stratified treatments. Journal of Neural Transmission. 2017;124:1015-1027. https://doi.org/10.1007/s00702-017-1707-x
40. Schrag A., Hommel A. L. A. J., Lorenzl S., Meissner W. G., Odin P. [et al.]. The late stage of Parkinson’s – results of a large multinational study on motor and non-motor complications. Parkinsonism & Related Disorders. 2020;75:91- 96. https://doi.org/10.1016/j.parkreldis.2020.05.016
41. Titova N., Qamar M. A., Chaudhuri K. R. Biomarkers of Parkinson’s disease: an introduction. International Review of Neurobiology. 2017;132:183-196. https://doi.org/10.1016/bs.irn.2017.03.003 42. Kim S., Kwon S. H., Kam T. I., Panicker N., Karuppagounder S. S. [et al.]. Transneuronal propagation of pathologic α-synuclein from the gut to the brain models Parkinson’s disease. Neuron. 2019;103(4):627-641. https://doi.org/10.1016/j.neuron.2019.05.035

Keywords: arkinson disease, enteric nervous system, alpha-synuclein, non-motor symptoms of the Parkinson disease


Founders:
Stavropol State Medical Academy
Pyatigorsk State Research Institute of Balneotherapeutics
Pyatigorsk State Pharmaceutical Academy