logo
Medical news
of the North Caucasus
Scientific journal
Mass media registration certificate dated December 7, 2006.
Series ПИ #ФС 77-26521.
Federal service for surveillance over non-violation of the legislation in the sphere of mass communications and protection of cultural heritage.
ISSN 2073-8137
rus
русский
eng
english

Site search



Correspondence address
310 Mira Street, Stavropol, Russia, 355017

Tel
+7 865 2352511, +7 865 2353229.

E-mail
medvestnik@stgmu.ru

Epigenetic mechanisms in epilepsy. Paradigm shift in seizure prevention and treatment

[Reviews]
Galina Aleksandrovna Afanaseva; Anna Vyacheslavovna Fisun; Evgeny Shchetinin;

The main epigenetic approaches for understanding the pathogenesis of epileptic seizures are considered, the leading components of the formation of convulsive activity in the neurons of the cerebral cortex are given, taking into account changes in DNA methylation systems, modification of histones and non-coding RNAs. The possibility of pathogenetically justified optimization of the regulation of epileptogenesis by interfering with the epigenetic control of neuronal function is discussed.

Download

References:
1.WHO. Epilepsy: a public health imperative: summary. World Health Organization. 2019. URL: https://apps.who.int/iris/handle/10665/325440
2. Poonam N. B., Filippi D., Hauser W. A. The descriptive epidemiology of epilepsy – a review. Epilepsy Res. 2009;85(1):31-45. https://doi.org/10.1016/j.eplepsyres.2009.03.003
3. Thijs R. D., Surges R., O’Brien T. J., Sander J. W. Epilepsy in adults. Lancet. 2019;393(10172):689-701. https://doi.org/10.1016/S0140-6736(18)32596-0
4. Kazakovtsev B. A., Sidoryuk O.V. Structural and dynamic characteristics of epilepsy incidence in Russia. Psihicheskoe zdorovie. – Mental Health. 2020;2:10-15. (In Russ).. https://doi.org/10.25557/2074-014X.2020.02.10-15
5. Avakjan G. N. Sovremennaja jepileptologija. Problemy i reshenija. Jepilepsija i paroksizmal’nye sostojanija – Epilepsy and paroxysmal states. 2015;7(4):16-21. (In Russ.). https://doi.org/10.17749/2077-8333.2015.7.4.016-021
6. Chang B. S., Lowenstein D. H. Epilepsy. N. Engl. J. Med. 2003;349:1257-1266. https://doi.org/10.1056/NEJMra022308
7. Marc A., Dichter M. D. Emerging Concepts in the Pathogenesis of Epilepsy and Epileptogenesis. Arch. Neurol. 2009:66(4):443-447. https://doi.org/10.1001/archneurol.2009.10
8. International League Against Epilepsy Consortium on Complex Epilepsies. Genome-wide mega-analysis identifies 16 loci and highlights diverse biological mechanisms in the common epilepsies. Nat. Commun. 2018;9(1):5269. https://doi.org/10.1038/s41467-018-07524-z
9. Qureshi I. A., Mehler M. F. Sex, epilepsy, and epigenetics. Neurobiol. Dis. 2014;72PB:210-216. https://doi.org/10.1016/j.nbd.2014.06.019
10. Chen T., Giri M., Xia Z., Subedi Y. N., Li Y. Genetic and epigenetic mechanisms of epilepsy: a review. Neuropsychiatr. Dis. Treat. 2017;13:1841-1859. https://doi.org/10.2147/NDT.S142032
11. Symonds J. D. CHD2 epilepsy: epigenetics and the quest for precision medicine. Dev. Med. Child Neurol. 2020;62(5):549-550. https://doi.org/10.1111/dmcn.14380
12. Conboy K., Henshall D. C., Brennan G. P. Epigenetic principles underlying epileptogenesis and epilepsy syndromes. Neurobiol. Dis. 2021;148:105179. https://doi.org/10.1016/j.nbd.2020.105179
13. Kobow K., Blümcke I. Epigenetics in epilepsy. Neurosci. Lett. 2018;667:40-46. https://doi.org/10.1016/j.neulet.2017.01.012
14. Hauser R. M., Henshall D. C., Lubin F. D. The Epigenetics of Epilepsy and Its Progression. Neuroscientist. 2018;24(2):186-200. https://doi.org/10.1177/1073858417705840
15. Kobow K., El-Osta A., Blümcke I. The methylation hypothesis of pharmacoresistance in epilepsy. Epilepsia. 2013;54(Suppl.2):41-47. https://doi.org/10.1111/epi.12183
16. Chen F., He X., Luan G., Li T. Role of DNA Methylation and Adenosine in Ketogenic Diet for Pharmacoresistant Epilepsy: Focus on Epileptogenesis and Associated Comorbidities. Front. Neurol. 2019;10:119. https://doi.org/10.3389/fneur.2019.00119
17. Younus I., Reddy D. S. Epigenetic interventions for epileptogenesis: A new frontier for curing epilepsy. Pharmacol. Ther. 2017;177:108-122. https://doi.org/10.1016/j.pharmthera.2017.03.002
18. Henshall D. C., Kobow K. Epigenetics and Epilepsy. Cold Spring Harb. Perspect. Med. 2015;5(12):a022731. https://doi.org/10.1101/cshperspect.a022731
19. Kobow K., Reid C. A., van Vliet E. A., Becker A. J., Carvill G. L. [et al.]. Epigenetics explained: a topic «primer» for the epilepsy community by the ILAE Genetics/Epigenetics Task Force. Epileptic Disord. 2020;22(2):127-141. https://doi.org/10.1684/epd.2020.1143
20. Jobe E. M., Zhao X. DNA Methylation and Adult Neurogenesis. Brain Plast. 2017;3(1):5-26. https://doi.org/10.3233/BPL-160034
21. Kobow K., Blümcke I. The methylation hypothesis: do epigenetic chromatin modifications play a role in epileptogenesis? Epilepsia. 2011;52(Suppl.4):15-19. https://doi.org/10.1111/j.1528-1167.2011.03145.x
22. Ryley Parrish R., Albertson A. J., Buckingham S. C., Hablitz J. J., Mascia K. L. [et al.]. Status epilepticus triggers early and late alterations in brain-derived neurotrophic factor and NMDA glutamate receptor Grin2b DNA methylation levels in the hippocampus. Neuroscience. 2013;248:602-619. https://doi.org/10.1016/j.neuroscience.2013.06.029
23. Miller-Delaney S. F., Bryan K., Das S., McKiernan R. C., Bray I. M. [et al.]. Differential DNA methylation profiles of coding and non-coding genes define hippocampal sclerosis in human temporal lobe epilepsy. Brain. 2015;138(Pt 3):616-631. https://doi.org/10.1093/brain/awu373
24. Williams-Karnesky R. L., Sandau U. S., Lusardi T. A., Lytle N. K., Farrell J. M. [et al.]. Epigenetic changes induced by adenosine augmentation therapy prevent epileptogenesis. J. Clin. Invest. 2013;123(8):3552-3563. https://doi.org/10.1172/JCI65636
25. Boison D., Rho J. M. Epigenetics and epilepsy prevention: The therapeutic potential of adenosine and metabolic therapies. Neuropharmacology. 2020;167:107741. https://doi.org/10.1016/j.neuropharm.2019.107741
26. Moffatt B. A., Stevens Y. Y., Allen M. S., Snider J. D., Pereira L. A. [et al.]. Adenosine Kinase Deficiency Is Associated with Developmental Abnormalities and Reduced Transmethylation. Plant. Physiol. 2002;128(3):812-821. https://doi.org/10.1104/pp.010880
27. Wang Y., Xu Y., Yan S., Cao K., Zeng X. [et al.]. Adenosine kinase is critical for neointima formation after vascular injury by inducing aberrant DNA hypermethylation. Cardiovasc. Res. 2021;117(2):561-575. https://doi.org/10.1093/cvr/cvaa040
28. Weltha L., Reemmer J., Boison D. The role of adenosine in epilepsy. Brain Res. Bull. 2019;151:46-54. https://doi.org/10.1016/j.brainresbull.2018.11.008
29. Ruskin D. N., Kawamura M., Masino S. A. Adenosine and Ketogenic Treatments. J. Caffeine Adenosine Res. 2020;10(3):104-109. https://doi.org/10.1089/caff.2020.0011
30. Longo R., Peri C., Cricrì D., Coppi L., Caruso D. [et al.]. Ketogenic Diet: A New Light Shining on Old but Gold Biochemistry. Nutrients. 2019;11(10):2497. https://doi.org/10.3390/nu11102497
31. Boison D. New insights into the mechanisms of the ketogenic diet. Curr. Opin. Neurol. 2017;30(2):187-192. https://doi.org/10.1097/WCO.0000000000000432
32. Fedorovich S. V., Voronina P. P., Waseem T. V. Ketogenic diet versus ketoacidosis: what determines the influence of ketone bodies on neurons? Neural. Regen. Res. 2018;13(12):2060-2063. https://doi.org/10.4103/1673-5374.241442
33. Gaston T. E., Szaflarski J. P. Cannabis for the Treatment of Epilepsy: an Update. Curr. Neurol. Neurosci. Rep. 2018;18(11):73. https://doi.org/10.1007/s11910-018-0882-y

34. Franco V., Perucca E. Pharmacological and Therapeutic Properties of Cannabidiol for Epilepsy. Drugs. 2019;79(13):1435-1454. https://doi.org/10.1007/s40265-019-01171-4
35. Murase S., Lantz C., Kim E., Gupta N, Higgins R. [et al.]. Matrix Metalloproteinase-9 regulates neuronal circuit development and excitability. Mol. Neurobiol. 2016;53(5):3477- 3493. https://doi.org/10.1007/s12035-015-9295-y
36. Zybura-Broda K., Amborska R., Ambrozek-Latecka M., Wilemska J., Bogusz A. [et al.]. Epigenetics of Epileptogenesis-Evoked Upregulation of Matrix Metalloproteinase-9 in Hippocampus. PLoS One. 2016;11(8):e0159745. https://doi.org/10.1371/journal.pone.0159745
37. Aizawa S., Yamamuro Y. Valproate administration to mice increases hippocampal p21 expression by altering genomic DNA methylation. Neuroreport. 2015;26(15):915- 920. https://doi.org/10.1097/WNR.0000000000000448
38. Xi Z., Deng W., Wang L., Xiao F., Li J. [et al.]. Association of Alpha-Soluble NSF Attachment Protein with Epileptic Seizure. J. Mol. Neurosci. 2015;57(3):417-425. https://doi.org/10.1007/s12031-015-0596-4
39. Detich N., Bovenzi V., Szyf M. Valproate induces replication-independent active DNA demethylation. J. Biol. Chem. 2003;278(30):27586-27592. https://doi.org/10.1074/jbc.M303740200
40. Milutinovic S., D’Alessio A. C., Detich N., Szyf M. Valproate induces widespread epigenetic reprogramming which involves demethylation of specific genes. Carcinogenesis. 2007;28(3):560-571. https://doi.org/10.1093/carcin/bgl167
41. Richmond T. J., Davey C. A. The structure of DNA in the nucleosome core. Nature. 2003;423(6936):145-150. https://doi.org/10.1038/nature01595
42. Biterge B., Schneider R. Histone variants: key players of chromatin. Cell Tissue Res. 2014;356(3):457-466. https://doi.org/10.1007/s00441-014-1862-4
43. Law C., Cheung P. Histone variants and transcription regulation. Subcell. Biochem. 2013;61:319-341. https://doi.org/10.1007/978-94-007-4525-4_14
44. Jagirdar R., Drexel M., Bukovac A., Tasan R. O., Sperk G. Expression of class II histone deacetylases in two mouse models of temporal lobe epilepsy. J. Neurochem. 2016;136(4):717-730. https://doi.org/10.1111/jnc.13440
45. Gano L. B., Liang L.-P., Ryan K., Michel C. R., Gomez J. [et al.]. Altered Mitochondrial Acetylation Profiles in a Kainic Acid Model of Temporal Lobe Epilepsy. Free Radic. Biol. Med. 2018;123:116-124. https://doi.org/10.1016/j.freeradbiomed.2018.05.063
46. Citraro R., Leo A., De Caro C., Nesci V., Gallo Cantafio M. E, [et al.]. Effects of Histone Deacetylase Inhibitors on the Development of Epilepsy and Psychiatric Comorbidity in WAG/Rij Rats. Mol. Neurobiol. 2020;57(1):408-421. https://doi.org/10.1007/s12035-019-01712-8
47. Reddy S. D., Clossen B. L., Reddy D. S. Epigenetic Histone Deacetylation Inhibition Prevents the Development and Persistence of Temporal Lobe Epilepsy. J. Pharmacol. Exp. Ther. 2018;364(1):97-109. https://doi.org/10.1124/jpet.117.244939
48. Citraro R., Leo A., Santoro M., D’agostino G., Constanti A., Russo E. Role of Histone Deacetylases (HDACs) in Epilepsy and Epileptogenesis. Curr. Pharm. Des. 2017;23(37):5546-5562. https://doi.org/10.2174/1381612823666171024130001
49. Basu T., O’Riordan K. J., Schoenike B. A., Khan N. N., Wallace E. P. [et al.]. Histone deacetylase inhibitors restore normal hippocampal synaptic plasticity and seizure threshold in a mouse model of Tuberous Sclerosis Complex. Sci. Rep. 2019;9(1):5266. https://doi.org/10.1038/s41598-019-41744-7
50. Milazzo G., Mercatelli D., Di Muzio G., Triboli L., De Rosa P. [et al.]. Histone Deacetylases (HDACs): Evolution, Specificity, Role in Transcriptional Complexes, and Pharmacological Actionability. Genes (Basel). 2020;11(5):556. https://doi.org/10.3390/genes11050556
51. Yan K., Rousseau J., Machol K., Cross L. A., Agre K. E. [et al.]. Deficient histone H3 propionylation by BRPF1-KAT6 complexes in neurodevelopmental disorders and cancer. Sci. Adv. 2020;6(4):eaax0021. https://doi.org/10.1126/sciadv.aax0021
52. Ornoy A., Becker M., Weinstein-Fudim L., Ergaz Z. S-Adenosine Methionine (SAMe) and Valproic Acid (VPA) as Epigenetic Modulators: Special Emphasis on their Interactions Affecting Nervous Tissue during Pregnancy. Int. J. Mol. Sci. 2020;21(10):3721. https://doi.org/10.3390/ijms21103721
53. Giavini E., Menegola E. Teratogenic activity of HDAC inhibitors. Curr. Pharm. Des. 2014;20(34):5438-5442. https://doi.org/10.2174/1381612820666140205144900
54. Tsilimigras D. I., Ntanasis-Stathopoulos I., Moris D., Spartalis E., Pawlik T. M. Histone deacetylase inhibitors in hepatocellular carcinoma: A therapeutic perspective. Surg. Oncol. 2018;27(4):611-618. https://doi.org/10.1016/j.suronc.2018.07.015
55. Hrebackova J., Hrabeta J., Eckschlager T. Valproic acid in the complex therapy of malignant tumors. Curr. Drug Targets. 2010;11(3):361-379. https://doi.org/10.2174/138945010790711923
56. Zimran E., Papa L., Djedaini M., Patel A., Iancu-Rubin C., Hoffman R. Expansion and preservation of the functional activity of adult hematopoietic stem cells cultured ex vivo with a histone deacetylase inhibitor. Stem Cells Transl. Med. 2020;9(4):531-542. https://doi.org/10.1002/sctm.19-0199
57. Bohnsack J. P., Patel V. K., Morrow A. L. Ethanol Exposure Regulates Gabra1 Expression via Histone Deacetylation at the Promoter in Cultured Cortical Neurons. J. Pharmacol. Exp. Ther. 2017;363(1):1-11. https://doi.org/10.1124/jpet.117.242446
58. Leach J. P., Mohanraj R., Borland W. Alcohol and drugs in epilepsy: pathophysiology, presentation, possibilities, and prevention. Epilepsia. 2012;53(Suppl 4):48-57. https://doi.org/10.1111/j.1528-1167.2012.03613.x
59. Jarroux J., Morillon A., Pinskaya M. History, Discovery, and Classification of lncRNAs. Adv. Exp. Med. Biol. 2017;1008:1-46. https://doi.org/10.1007/978-981-10-5203-3_1
60. Hombach S., Kretz M. Non-coding RNAs: Classification, Biology and Functioning. Adv. Exp. Med. Biol. 2016;937:3- 17. https://doi.org/10.1007/978-3-319-42059-2_1
61. Ma Y. The Challenge of microRNA as a Biomarker of Epilepsy. Curr. Neuropharmacol. 2018;16(1):37-42. https://doi.org/10.2174/1570159X15666170703102410
62. Paschou M., Maier L., Papazafiri P., Selescu T., Dedos S. G. [et al.]. Neuronal microRNAs modulate TREK two-pore domain K+ channel expression and current density. RNA Biol. 2020;17(5):651-662. https://doi.org/10.1080/15476286.2020.1722450
63. Henshall D. C. Epigenetics and noncoding RNA: Recent developments and future therapeutic opportunities. Eur. J. Paediatr. Neurol. 2020;24:30-34. https://doi.org/10.1016/j.ejpn.2019.06.002
64. Venø M. T., Reschke C. R., Morris G., Connolly N. M. C., Su J. [et al.]. A systems approach delivers a functional microRNA catalog and expanded targets for seizure suppression in temporal lobe epilepsy. Proc. Natl. Acad. Sci. USA. 2020;117(27):15977-15988. https://doi.org/10.1073/pnas.1919313117
65. Henshall D. C., Hamer H. M., Pasterkamp R. J., Goldstein D. B., Kjems J. [et al.]. MicroRNAs in epilepsy: pathophysiology and clinical utility. Lancet Neurol. 2016;15(13):1368-1376. https://doi.org/10.1016/S1474-4422(16)30246-0

Keywords: epilepsy, neurons, epigenetics, DNA methylation, histone modification


Founders:
Stavropol State Medical Academy
Pyatigorsk State Research Institute of Balneotherapeutics
Pyatigorsk State Pharmaceutical Academy