logo
Medical news
of the North Caucasus
Scientific journal
Mass media registration certificate dated December 7, 2006.
Series ПИ #ФС 77-26521.
Federal service for surveillance over non-violation of the legislation in the sphere of mass communications and protection of cultural heritage.
ISSN 2073-8137
rus
русский
eng
english

Site search



Correspondence address
310 Mira Street, Stavropol, Russia, 355017

Tel
+7 865 2352511, +7 865 2353229.

E-mail
medvestnik@stgmu.ru

Pseudoarthrosis: search for treatment methods of delayed consolidation and non-union

[Reviews]
Valery G. Samodai; Andrey Olegovich Starikov; Pavel Ivanovich Kalashnikov; Pavel Anatolyevich Mandroshchenko;

There are many technologies and ways to influence the area compromised by trauma in order to avoid complications, which today take the form of traumatic epidemics. On average, 40–50 % of fracture healing cases occur with delayed consolidation and the formation of pseudoarthrosis. The use of modern orthobiological methods of normalization of regenerative osteogenesis allows us to achieve good results. However, a large selection of modern technologies for influencing the links of osteogenesis does not mean greater accessibility. Many bioengineering methods have a high cost of technological processes, require special conditions for application, which imposes restrictions on the use of the latest highly effective tools. Currently, the «gold standard», an affordable way to stimulate the osteogenetic process is bone grafting. A compromise between bioengineering technologies and bone grafting is the use of lyophilized platelet growth factors derived from allogeneic blood. This is an inexpensive, promising technique that, in combination with bone grafting, gives good results. This article presents information about the most used materials and methods of stimulation of regenerative osteogenesis to date.

Download

References:
1. Einhorn T. A., Gerstenfeld L. C. Fracture healing: mechanisms and interventions. Nat. Rev. Rheumatol. 2015;11(1):45-54. https://doi.org/10.1038/nrrheum.2014.164
2. Blazhenko A. N., Kurinny S. N., Mukhanov M. L., Ageev M. Yu., Gorbunov A. V. [et al.]. Results of treatment of open fractures in patients with polytrauma in the conditions of a regional injury system. Kubanskij nauchnyj medicinskij vestnik. – Kuban Scientific Medical Bulletin. 2018;25(3):28-33. (In Russ.). https://doi.org/10.25207/1608-6228-2018-25-3-28-33
3. Fedorov V. G., Kuzin I. V., Shapranov O. N. Intramedular blocked osteosynthesis of the femor: types of non-consusion and false joints. Sovremennye problemy nauki i obrazovanija. – Modern problems of science and education. 2019;6:155. (In Russ.).
4. Rüedi B. Moran AO-Principles for the Treatment of Fractures (in two volumes). Vassa-Media. 2012. 5. Westgeest J., Weber D., Dulai S. K. Factors Associated with Development of Nonunion or Delayed Healing After an Open Long Bone Fracture: A Prospective Cohort Study of 736 Subjects. J. Orthopaed. Trauma. 2016;30(3):149-155. https://doi.org/10.1097/BOT.0000000000000488
6. Hak D. J., Fitzpatrick D., Bishop J. A., Marsh J. L., Tilp S. [et al.]. Delayed union and nonunions: epidemiology, clinical issues, and financial aspects. Injury. 2014;45(2):3-7. https://doi.org/10.1016/j.injury.2014.04.002
7. Samodai V. G., Rylkov M. I., Polessky M. G., Gaydukov V. E., Fedorischev A. P. Possibilities of influencing reparative osteogenesis // rganizatsionnye i klinicheskiye voprosy okazaniya pomoshchi bolnym v travmatologii i ortopedii: materialy XIII mezhregionalnoy nauchno-prakticheskoy konferentsii. Voronezh, 2017:184-186. Available at: https://elibrary.ru/download/elibrary_32412372_98207528. (In Russ.).
8. Kesler P. A., Borisova M. V. Rehabilitation using therapeutic exercise for femural fractures. Mezhdunarodnyj studencheskij nauchnyj vestnik. – International Student Scientific Bulletin. 2018;5:19. (In Russ.).
9. Aksenova A. M. Physiological bases of therapeutic exercise and deep reflector-muscularь massage. Lechebnaja fizkul’tura i sportivnaja medicina. – Physiotherapy and sports medicine. 2014;5(125):48-56. (In Russ.).
10. Gubanov A. V., Samodai V. G. Ambulatory treatment of intra-articular fractures. Nauchno-medicinskij vestnik Сentral’nogo Сhernozem’ja. – Scientific and medical bulletin of the Central Chernozem region. 2016;65:46-50. (In Russ.).
11. Luneva S. N., Matveeva E. L., Gasanova A. G., Boychuk S. P., Sazonova N. V. The role of calcium and vitamin D3 in restoring bone integrity after fractures. Doktor.ru. 2019;2(157):55-60. (In Russ.).
12. Ishmekeeva E. V., Medvedeva M. A. Resolutionary surgery of the false joints: from N. V. Sklifosovsky to the days. Vestnik soveta molodyh uchjonyh i specialistov Cheljabinskoj oblasti. – Bulletin of the council of young scientists and specialists of the Chelyabinsk region. 2016;2(13):45-48. (In Russ.).
13. Gubin A. V., Borzunov D. Yu., Marchenkova L. O., Smirnova I. L. Scientific heritage of Academician G. A. Ilizarova: a look from the past into the future (part 1). Genij ortopedii. – Orthopedic genius. 2016;2:6-12. (In Russ.).
14. Samoday V. G., Parkhisenko Yu. A., Ivanov A. A. Nestandartnaja hirurgija kriticheskoj ishemii nizhnih konechnostej. Moskva: «Medicinskoe informacionnoe agentstvo», 2009. (In Russ.).
15. Kovalenko A. Yu., Kezlya O. P., Vladimirskaya T. E. Modern methods and approaches in treatment of palse joints of long tubular bones. Recept. –Recipe. 2011;3(77):107-118. (In Russ.).
16. Nandi S. K., Roy S., Mukherjee P., Orthopaedic applications of bone graft & graft substitutes: a review. Indian J. Med. Res. 2010;132:15-30.
17. Yazar S. Onlay bone grafts in head and neck reconstruction. Semin. Plast. Surg. 2010;24(3):255-261. https://doi.org/10.1055/s-0030-1263067
18. Brydone A. S., Meek D., Maclaine S. Bone grafting, orthopaedic biomaterials, and the clinical need for bone engineering. Proc. Inst. Mech. Eng. H. 2010;224(12):1329-1343. https://doi.org/10.1243/09544119JEIM770
19. Athanasiou V. T., Papachristou D. J., Panagopoulos A. Histological comparison of autograft, allograft-DBM, xenograft, and synthetic grafts in a trabecular bone defect: an experimental study in rabbits. Med. Sci. Monit. 2010;16(1):24-31.
20. Dimitriou R., Jones E., McGonagle D., Giannoudiset P. V. Bone regeneration: current concepts and future directions. BMC Medical. 2011;9:66. https://doi.org/10.1186/1741-7015-9-66
21. Moshiri A., Oryan A. Role of tissue engineering in tendon reconstructive surgery and regenerative medicine: current concepts, approaches and concerns. Hard. Tissue. 2012;1(2):11.
22. Amruthwar S. S., Janorkar A. V. In vitro evaluation of elastin- like polypeptide-collagen composite scaffold for bone tissue engineering. Dent. Mater. 2013;29(2):211-220. https://doi.org/10.1016/j.dental.2012.10.003
23. Xia Y., Zhou P., Cheng X., Xie Y., Liang C. [et al.]. Selective laser sintering fabrication of nano-hydroxyapatite/poly-ε-caprolactone scaffolds for bone tissue engineering applications. Int. J. Nanomedicine. 2013;8:4197-4213. https://doi.org/10.2147/IJN.S50685
24. Samodai V. G. Starikov A. O. Kalashnikov P. I. Lyophilized allogenic growth factors in traumatology and orthopedics as a prospective direction of regenerative medicine. Politravma. – Polytrauma. 2019;4:15-28. (In Russ.).
25. Samodai V. G., Brekhov V. L., Gaidukov V. E., Rylkov M. I. The use of platelet- rich autoplasma (PRP) in the surgical treatment of bone tissue defects with discontinuity of the bone. Sistemnyj analiz i upravlenie v biomedicinskih sistemah. – System analysis and control in biomedical systems. 2007;6(2):493-497. (In Russ.).
26. Lee S. S., Huang B. J., Kaltz S. R., Sur S., Newcomb C. J. [et al.]. Bone regeneration with low dose BMP-2 amplified by biomimetic supramolecular nanofibers within collagen scaffolds. Biomaterials. 2013;34(2):452-459. https://doi.org/10.1016/j.biomaterials.2012.10.005
27. Stogov M. V., Smolentsev D. V., Kireeva E. A. Bone xenomaterials in traumatology and orthopedics (analytical literature review). Travmatologiya i ortopediya Rossii. – Traumat. Orthop. Russia. 2020;26(1):181-189. (In Russ.). https://doi.org/10.21823/2311-2905-2020-26-1-181-189
28. Zimmermann G., Moghaddam A. Allograft bone matrix versus synthetic bone graft substitutes. Injury. 2011;42(2):16-21. https://doi.org/10.1016/j.injury.2011.06.199
29. Martino A. D., Liverani L., Rainer A., Salvatore G., Trombetta M., Denaro V. Electrospun scaffolds for bone tissue engineering. Musculoskelet. Surg. 2011;95(2):69-80. https://doi.org/10.1007/s12306-011-0097-8
30. Müller M. A., Frank A., Briel M., Valderrabano V., Vavken P. [et al.]. Substitutes of structural and non-structural autologous bone grafts in hindfoot arthrodeses and osteotomies: a systematic review. BMC Musculoskelet. Disord. 2013;14:59. https://doi.org/10.1186/1471-2474-14-59
31. Oryan A., Moshiri A., Meimandi Parizi A. H., Jahromiet A. R. Repeated administration of exogenous Sodium-hyaluronate improved tendon healing in an in vivo transection model. J. Tissue Viability. 2012;21(3):88-102. https://doi.org/10.1016/j.jtv.2012.06.002
32. Ma J., Both S. K., Yang F., Fu-Zhai C., Pan J. [et al.]. Concise review: cell-based strategies in bone tissue engineering and regenerative medicine. Stem. Cells Transl. Med. 2014;3(1):98-107. https://doi.org/10.5966/sctm.2013-0126
33. Pastorino L., Dellacasa E., Scaglione S., Giulianelli M., Sbrana F. [et al.]. Oriented collagen nanocoatings for tissue engineering. Colloids. Surf. Biointerfaces. 2014;114:372-378. https://doi.org/10.1016/j.colsurfb.2013.10.026
34. Castilho M., Dias M., Gbureck U., Groll J., Fernandes P. [et al.]. Fabrication of computationally designed scaffolds by low temperature 3D printing. Biofabrication. 2013;5(3):035012. https://doi.org/10.1088/1758-5082/5/3/035012
35. Guo X., Wang Y., Qin Y., Shen P., Peng Q. Structures, properties and application of alginic acid: A review. Intern. J. Biological. Macromolec.2020;162:618-628. https://doi.org/10.1016/j.ijbiomac.2020.06.180
36. You Y., Xie Y., Jiang Z. Injectable and biocompatible chitosan-alginic acid hydrogels. Biomed. Mater. 2019;14(2):025010. https://doi.org/10.1088/1748-605X/aaff3d
37. Aravamudhan A., Ramos D. M., Nip J., Harmon M. D., Roshan J. [et al.]. Cellulose and collagen derived micro- nano structured scaffolds for bone tissue engineering. J. Biomed. Nanotechnol. 2013;9(4):719-731. https://doi.org/10.1166/jbn.2013.1574
38. Wang M., Cheng X., Zhu W., Holmes B., Keidar M., Zhang L. G. Design of biomimetic and bioactive cold plasma- modified nanostructured scaffolds for enhanced osteogenic differentiation of bone marrow-derived mesenchymal stem cells. Tissue Eng. Part A. 2014;20(5-6):1060-1071. https://doi.org/10.1089/ten.TEA.2013.0235
39. Kazakova V. S., Novikov O. O., Zhilyakova E. T. Prospects for using growth factors in bone tissue restoration. literature review. Nauchnyj rezul’tat. Serija: medicina i farmacija. – Scientific result. Series: medicine and pharmacy. 2015;1(3):151-158. (In Russ.).
40. Stogov M. V., Karasev A. G., Kireeva E. A., Tushina N. V. High concentrations of some metabolites and growth factors in patients with slow healing fractures of the lower extremities. Genij ortopedii. – Orthopedic genius. 2018;4(4):482-486. (In Russ.). https://doi.org/10.18019/1028-4427-2018-24-4-482-486
41. Gokun Yu. S. 3D-bioprinting as a legal phenomenon in the field of transplantation. Voprosy rossijskoj justicii. – Issues of Russian justice. 2020;5:35-44. (In Russ.).
42. Toropkov N. E., Petrovskaya T. S., Vereshchagin V. I., Antonkin N. S. Applicationn Russ.)]. In 3d-printing of biocomposites based on hydroxyapatitis and polylactid // Deformatsiya i razrusheniye materialov i nanomaterialov: materialy VII Mezhdunarodnoy konferentsii. Moskva, 2017:661-663. Available at: https://elibrary.ru/download/elibrary_32605455_40662515. (In Russ.).
43. Nachetnikova I. A., Gilev M. V., Stepanov S. I. Application of additive technologies for the manufacture of biocompatible osteo-substituting implants. Nauka nastojashhego i budushhego. – Science of the present and future. 2019;2:53-54. (In Russ.).
44. Lu C., Xing Z., Yu Y. Y., Colnot C., Miclau T., Marcucio R. S. Recombinant human bone morphogenetic protein- 7 enhances fracture healing in an ischemic environment. J. Orthop. Res. 2010;28(5):687-696. https://doi.org/10.1002/jor.21033
45. Carragee E. J., Hurwitz E. L., Weiner B. K. A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: emerging safety concerns and lessons learned. Spine J. 2011;11(6):471-491. https://doi.org/10.1016/j.spinee.2011.04.023
46. Oryan A., Moshiri A., Raayat A. R. Novel application of Theranekron® enhanced the structural and functional performance of the tenotomized tendon in rabbits. Cells Tissues Organs. 2012;196(5):442-455. https://doi.org/10.1159/000337860
47. Backly R. M., Zaky S. H., Canciani B., Saad M. M., Eweida A. M. [et al.]. Platelet rich plasma enhances osteoconductive properties of a hydroxyapatite-β-tricalcium phosphate scaffold (Skelite) for late healing of critical size rabbit calvarial defects. J. Craniomaxillofac. Surg. 2014;42(5):70- 79. https://doi.org/10.1016/j.jcms.2013.06.012
48. Naryshkin E.A. PRP-therapy: What is proven. Opinion leader. 2018;7(15):74-76. (In Russ.).
49. Strakhov M. A., Zagorodny N. V., Lazishvili G. D., Skoroglyadov A. V., Brizhan L. K. [et al.]. Features of the application of platelet-rich plasma (PRP) in traumatology, orthopedics and sport medicine. Opinion leader. 2016;1(1):50-55. (In Russ.).
50. Ryabinin S. V., Samoday V. G. Comparative evaluation of the clinical efficacy of the treatment of gonarthrosis using autogenous growth factors and hyaluronic acid. Vestnik Voronezhskogo Gosudarstvennogo universiteta. Serija: himija. biologija. farmacija. – Bulletin of the Voronezh State University. Series: chemistry. biology. pharmacy. 2017;3:95-99. (In Russ.).
51. Samoday V. G., Mandroshchenko P. A. Possibilities of arthroscopic treatment of gonarthrosis using platelet-enriched plasma // Organizatsionnye i klinicheskiye voprosy okazaniya pomoshchi bolnym v travmatologii i ortopedii: materialy XIII mezhregionalnoy nauchno-prakticheskoy konferentsii. Voronezh, 2017:173-176. Available at: https://elibrary.ru/download/elibrary_32412367_42429940. (In Russ.).
52. Samodai V. G., Brekhov V. L., Gaidukov V. E., Rylkov M. I. Patent holders: Samodai V. G. Patent № RU 2305563 C2. Method for obtaining blood autoplasm rich in plate. Date of publication: 10.09.2007. (In Russ.).
53. Samoday V. G., Ryabinin S. V., Polesskiy M. G. The use of autogenous growth factors in the treatment of deforming osteoarthritis of large joints // Klassika i innovacii v travmatologii i ortopedii: materiali Vserossijskoj nauchno-prakticheskoj konferencii. Saratov, 2016:306-309. Available at: https://elibrary.ru/download/elibrary_26215556_64604470. (In Russ.).
54. Samoday V. G., Poleskiy M. G. Patent № 2506946 RF. Technology of liophilisation of platelet-enriched plasma with preservation of vital activity of TGF, PDGF and VEGF: MPKA61K9/19, A61K38/18, A61L15/44, B01J3/00. Bul. № 25 20.02.2014. (In Russ.).
55. Starikov A. O., Samoday V. G. Application of a complex of allogenic lyophilized platelet growth factors for the normalization of regenerative osteogenesis in fractures of long bones // Vesennie dni ortopedii: materiali Mezhdunarodnogo kongressa. Moskva, 2019:188-192. Available at: https://elibrary.ru/download/elibrary_37278778_84885232. (In Russ.).
56. Samoday V. G., Starikov A. O., Kalashnikov P. I., Mandroshchenko P. A. Patent № 2743227. A method of obtaining a complex of allogeneic lyophilized platelet growth factors for stimulating regenerative osteogenesis. Bul. 16.02.2021. (In Russ.).
57. Thitiset T., Damrongsakkul S., Bunaprasert T., Leeanansaksiri W., Honsawek S. Development of collagen/demineralized bone powder scaffolds and periosteum-derived cells for bone tissue engineering application. Int. J. Mol. Sci. 2013;14(1):2056-2071. https://doi.org/10.3390/ijms14012056
58. Parikh S. N. Bone graft substitutes: past, present, future. J. Postgrad. Med. 2002;48(2):142-148.
59. Islamov R. R., Sokolov M. E., Bashirov F. V., Markosyan V. A., Izmailov A. A. [et al.]. Patent № 2716013. Method for manufacturing means for cell-mediated gene therapy and means for cell-medied gene therapy. Bul. 05.03.2020. (In Russ.).

Keywords: pseudoarthrosis, delayed consolidation, non-union, platelet-rich plasma, lyophilized growth factors, growth factors, PDGF, reparative osteogenesis


Founders:
Stavropol State Medical Academy
Pyatigorsk State Research Institute of Balneotherapeutics
Pyatigorsk State Pharmaceutical Academy