logo
Medical news
of the North Caucasus
Scientific journal
Mass media registration certificate dated December 7, 2006.
Series ПИ #ФС 77-26521.
Federal service for surveillance over non-violation of the legislation in the sphere of mass communications and protection of cultural heritage.
ISSN 2073-8137
rus
русский
eng
english

Site search



Correspondence address
310 Mira Street, Stavropol, Russia, 355017

Tel
+7 865 2352511, +7 865 2353229.

E-mail
medvestnik@stgmu.ru

Role of cytokines in the formation of immunological microenvironment in low-grade brain gliomas, their significance for diagnosis and immunotherapy

[Reviews]
Oleg Kit; Sergey Nikolaevich Ignatov; Elena Zlatnik; Natalya Vasilievna Soldatkina; Eduard Evgenievich Rostorguev; Alexander Borisovich Sagakyants; Oksana Gennadievna Shulgina;

Glial tumors account for 35.5 % of all CNS tumors, and 54 % of glial tumors are glioblastomas (GB). The median survival in GB is about 15 months. Important prognostic criteria, along with histological characteristics of the tumor, include molecular genetic aberrations. Based on the presence of IDH gene mutation, was formulated the concept of «secondary glioblastoma», and proved that its formation is impossible without immunosuppressive microenvironment, including changes in the cytokine composition. This article provides a literature review based on an analysis of the Pubmed database about functions and the prognostic role of some cytokines and their possible use as targets for GB therapy.

Download

References:
1. Kaprin A. D., Starinskij V. V., Petrova G. V. Malignant neoplasms in Russia in 2017 (morbidity and mortality). Moscow, 2018. (In Russ.).
2. Clinical recommendations: Primary tumors of the central nervous system. Ministry of the Russian Federation, 2017 (In Russ.).
3. Greenberg M. S. Handbook of Neurosurgery. Eighth Edition, 2016:612-628.
4. Thakkar J. P., Dolecek T. A., Horbinski C., Ostrom Q. T., Lightner D. [et al.]. Epidemiologic and molecular prognostic review of glioblastoma. Cancer Epidemiol. Biomarkers Prev. 2014;23(10):1985-1996. https://doi.org/10.1158/1055-9965.EPI-14-0275
5. Louis D. N., Perry A., Reifenberger G., von Deimling A., Figarella-Branger D. [et al.]. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol. 2016;131(6):803-820. https://doi.org/10.1007/s00401-016-1545-1
6. Komori T. The 2016 WHO Classification of Tumours of the Central Nervous System: The Major Points of Revision. Neurol. Med. Chir. (Tokyo). 2017;57(7):301-311. https://doi.org/10.2176/nmc.ra.2017-0010
7. Wesseling P., Capper D. WHO 2016 Classification of gliomas. Neuropathol. Appl. Neurobiol. 2018;44(2):139-150. https://doi.org/10.1111/nan.12432
8. Cancer Genome Atlas Research. Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas. N. Eng. J. Med. 2015;372(26):2481-2498. https://doi.org/10.1056/nejmoa1402121
9. Aibaidula A., Chan A. K., Shi Z., Li Y., Zhang R. [et al.]. Adult IDH wild-type lower-grade gliomas should be further stratified. Neur. Oncol. 2017;19(10):1327-1337. https://doi.org/10.1093/neuonc/nox078
10. Khan I., Waqas M., Shamim M. S. Prognostic significance of IDH 1 mutation in patient with glioblastoma multiforme. J. Pak. Med. Assoc. 2017;67(5):816-817.
11. de Quintana-Schmidt C., Alvarez-Holzapfel M. J., Nomdedeu-Guinot J., Bague-Rosell S., Gallego-Rubio O. [et al.]. Isocitrate dehydrogenase type I mutation as a prognostic factor in glioblastoma and a literature review. Neurocirugia. 2015;26(6):276-283. https://doi.org/10.1016/j.neucir.2015.04.001
12. Goryaynov S. A., Gol’dberg M. F., Golanov A. V., Zolotova S. V., Shishkina L. V. [et al.]. The phenomen on of long-term survival in glioblastoma patients. Part I: the role of clinical and demographic factors and an IDH1 mutation (R 132 H). Voprosi neyrohirurgii im. N. N. Burdenko. – Burdenko’s Journal of Neurosurgery. 2017;81(3):5-16. (In Russ.). https://doi.org/10.17116/neiro20178135-16
13. Weller M., Berger H., Hartmann C., Schramm J., Westphal M. [et al.]. Combined 1p/19q loss in oligodendroglial tumors: predictive or prognostic biomarker? Clin. Cancer Res. 2007;13(23):6933-6937. https://doi.org/10.1158/1078-0432.CCR-07-0573
14. Ohba S., Kuwahara K., Yamada S., Abe M., Hirose Y. Correlation between IDH, ATRX, and TERT promoter mutations in glioma. Brain Tumor Pathol. 2020;37(2):33-40. https://doi.org/10.1007/s10014-020-00360-4
15. Hanisch U. K. Microglia as a source and target of cytokines. Glia. 2002;40(2):140-155. https://doi.org/10.1002/glia.10161
16. Gieryng A., Pszczolkowska D., Walentynowicz K. A., Rajan W. D., Kaminska B. Immune microenvironment of gliomas. Lab. Invest. 2017;97(5):498-518. https://doi.org/10.1038/labinvest.2017.19
17. Choi B. D., Maus M. V., June C. H., Sampson J. H. Immunotherapy for Glioblastoma: Adoptive T-cell Strategies. Clin. Cancer. Res. 2019;25(7):2042-2048. https://doi.org/10.1158/1078-0432.CCR-18-1625
18. Chiorean R., Berindan-Neagoe I., Braicu C., Florian I. S., Leucuta D. [et al.]. Quantitative expression of serum biomarkers involved in angiogenesis and inflammation, in patients with glioblastoma multiforme: Correlations with clinical data. Cancer Biomark. 2014;14(2-3):185-194. https://doi.org/10.3233/CBM-130310
19. Chernov M. F., Muragaki Y., Kesari S., McCutcheon I. E. Intracranial Gliomas. Part III – Innovative treatment modalities. Basel: Karger, 2018:79-89.
20. Iwami K., Natsume A., Wakabayashi T. Cytokine networks in glioma. Neurosurg. Rev. 2011;34(3):253-263. https://doi.org/10.1007/s10143-011-0320-y
21. Iwami K., Natsume A., Wakabayashi T. Cytokine Therapy of Gliomas. Prog. Neurol. Surg. 2018;32:79-89. https://doi.org/10.1159/000469682
22. Charles N. A., Holland E. C., Gilbertson R., Glass R., Kettenmann H. The brain tumor microenvironment. Glia. 2012;60(3):502-514. https://doi.org/10.1002/glia.21264
23. Hwang J. S., Jung E. H., Kwon M. Y., Han I. O. Glioma-secreted soluble factors stimulate microglial activation: The role of interleukin-1β and tumor necrosis factor-α. J. Neuroimmunol. 2016;298:165-171. https://doi.org/10.1016/j.jneuroim.2016.08.001
24. Szulzewsky F., Pelz A., Feng X., Synowitz M., Markovic D. [et al.]. Glioma-associated microglia/macrophages display an expression profile different from M1 and M2 polarization and highly express Gpnmb and Spp1. PLoS One. 2015;10(2): e0116644. https://doi.org/10.1371/journal.pone.0116644
25. Berlow N. E., Svalina M. N., Quist M. J., Settelmeyer T. P., Zherebitskiy V. [et al.]. IL-13 receptors as possible therapeutic targets in diffuse intrinsic pontine glioma. PLoS One. 2018;13(4):е0193565. https://doi.org/10.1371/journal.pone.0193565
26. Kore R. A., Abraham E. C. Inflammatory cytokines, interleukin-1 beta and tumor necrosis factor-alpha, upregulated in glioblastoma multiforme, raise the levels of CRYAB in exosomes secreted by U373 glioma cells. Biochem. Biophys. Res. Commun. 2014;453(3):326-331. https://doi.org/10.1016/j.bbrc.2014.09.068
27. Hurmath F. K., Ramaswamy P., Nandakumar D. N. IL-1b microenvironment promotes proliferation, migration and invasion of human glioma cells. Cell. Biol. Int. 2014;38(12):1415-1422. https://doi.org/10.1002/cbin.10353
28. Tarassishin L., Casper D., Lee S. C. Aberrant Expression of Interleukin-1b and Inflammasome Activation in Human Malignant Gliomas. PLoS One. 2014;9(7):e103432. https://doi.org/10.1371/journal.pone.0103432
29. Hai B. O., Qia O., Jia L. I., Lian -Jie L. V., Ben-Jin Nie. [et al.]. The effects of interleukin 2 and rAd-p53 as a treatment for glioblastoma. Mol. Med. Rep. 2018;17(3):4853-4859. https://doi.org/10.3892/mmr.2018.8408
30. Kim E. S., Choi Y. E., Hwang S. J., Han Y. H., Park M. J., Bae I. H. IL-4, a direct target of miR-340/429, is involved in radiation-induced aggressive tumor behavior in human carcinoma cells. Oncotarget. 2016;7(52):86836-86856. https://doi.org/10.18632/oncotarget.13561
31. Barzon L., Pacenti M., Franchin E., Colombo F., Palù G. HSV-TK/IL-2 gene therapy for glioblastoma multiforme. Methods. Mol. Biol. 2009;542:529-549. https://doi.org/10.1007/978-1-59745-561-9_28
32. Bai F. L., Yu Y. H., Tian H., Ren G. P., Wang H. [et al.]. Genetically engineered Newcastle disease virus expressing interleukin-2 and TNF-related apoptosis-inducing ligand for cancer therapy. Cancer Biol. Ther. 2014;15:1226-1238. https://doi.org/10.4161/cbt.29686
33. Weber F., Asher A., Bucholz R., Berger M., Prados M. [et al.]. Local convection enhanced delivery of IL4-Pseudomonas exotoxin (NBI-3001) for treatment of patients with recurrent malignant glioma. Acta Neurochir Suppl. 2003;88:93-103. https://doi.org/10.1007/bf02700027
34. Rainov N. G., Heidecke V. Long term survival in a patient with recurrent malignant glioma treated with intratumoral infusion of an IL4-targeted toxin (NBI-3001). J. Neurooncol. 2004;66(1-2):197-201. https://doi.org/10.1023/b:neon.0000013478.27604.01
35. Hunter C. A., Jones S. A. IL-6 as a keystone cytokine in health and disease. Nat. Immunol. 2015;16(5):448-457. https://doi.org/10.1038/ni1117-1271b
36. Wang Y., Chen X., Tang G., Liu D., Peng G. [et al.]. AS-IL6 promotes glioma cell invasion by inducing H3K27Ac enrichment at the IL6 promoter and activating IL6 transcription. FEBS Lett. 2016;590(24):4586-4593. https://doi.org/10.1002/1873-3468.12485
37. Yao Y., Ye H., Qi Z., Mo L., Yue Q. [et al.]. B7-H4(B7x)-mediated cross-talk between Glioma initiating cells and macrophages via the IL6/JAK/STAT3 pathway lead to poor prognosis in Glioma patients. Clin. Cancer Res. 2016;22(11):2778-2790. https://doi.org/10.1158/1078-0432.CCR-15-0858
38. Weissenberger J., Loeffler S., Kappeler A., Kopf M., Lukes A. [et al.]. IL-6 is required for glioma development in a mouse model. Oncogene. 2004;23(19):3308-3316. https://doi.org/10.1038/sj.onc.1207455
39. Jin X., Kim S. H., Jeon H. M., Beck S., Sohn Y. W. [et al.]. Interferon regulatory factor 7 regulates glioma stem cells via interleukin-6 and notch signalling. Brain. 2012;135(Pt4):1055-1069. https://doi.org/10.1093/brain/aws028
40. Jiang Y., Han S., Cheng W., Wang Z., Wu A. NFAT1-regulated IL6 signalling contributes to aggressive phenotypes of glioma. Cell. Commun. Signal. 2017;15(1):54. https://doi.org/10.1186/s12964-017-0210-1
41. Kosmopoulos M., Christofides A., Drekolias D., Zavras P., Antonios N. [et al.]. Critical Role of IL-8 Targeting in Gliomas. Curr. Med. Chem. 2018;25:1954-1967. https://doi.org/10.2174/0929867325666171129125712
42. Liu H., Mao P., Xie C., Xie W., Wang M., Jiang H. Association between interleukin 8-251 T/A and +781 C/T polymorphisms and glioma risk. Diagn. Pathol. 2015;10:138. https://doi.org/10.1186/s13000-015-0378-x
43. Henker C., Kriesen T., Furst K., Goody D., Glass А. [et al.]. Effect of 10 different polymorphisms on preoperative volumetric characteristics of glioblastoma multiforme. J. Neurooncol. 2016;126(3):585-592. https://doi.org/10.1007/s11060-015-2005-9
44. Zhang B., Shi L., Lu S., Sun X., Liu Y. [et al.]. Autocrine IL-8 promotes F-actin polymerization and mediate mesenchymal transition via ELMO1-NF-κB-Snail signaling in glioma. Cancer Biol. Ther. 2015;16(6):898-911. https://doi.org/10.1080/15384047.2015.1028702
45. Muller L., Muller-Haegele S., Mitsuhashi M., Gooding W., Okada H., Whiteside T. L. Exosomes isolated from plasma of glioma patients enrolled in a vaccination trial reflect antitumor immune activity and might predict survival. OncoImmunology. 2015;4(6):e1008347. https://doi.org/10.1080/2162402X.2015.1008347
46. Geginat J., Larghi P., Paroni M., Nizzoli G., Penatti A. [et al.]. The light and the dark sides of Interleukin-10 in immune-mediated diseases and cancer. Cytokine Growth Factor Rev. 2016;30:87-93. https://doi.org/10.1016/j.cytogfr.2016.02.003
47. Oft M. Immune regulation and cytotoxic T cell activation ofIL-10 agonists – Preclinical and clinical experience. Semin. Immunol. 2019;44:101325. https://doi.org/10.1016/j.smim.2019.101325
48. Zadka L., Kram P., Koscinski J., Jankowski R., Kaczmarek M. [et al.]. Association Between Interleukin-10 Receptors and the CD45-Immunophenotype of Central Nervous System Tumors: A Preliminary Study. Anticancer Res. 2017;37(10):5777-5783. https://doi.org/10.21873/anticanres.12019
49. Lippitz B. E. Cytokine patterns in patients with cancer: a systematic review. Lancet Oncol. 2013;14:e218-228. https://doi.org/10.1016/S1470-2045(12)70582-X
50. Klinke D. J. Enhancing the discovery and development of immunotherapies for cancer using quantitative and systems pharmacology: Interleukin-12 as a case study. J. Immunother. Cancer. 2015;3:27. https://doi.org/10.1186/s40425-015-0069-x
51. Barrett J. A., Cai H., Miao J., Khare P. D., Gonzalez P. [et al.]. Regulated intratumoral expression of IL-12 using a RheoSwitch Therapeutic System® (RTS®) gene switch as gene therapy for the treatment of glioma. Cancer Gene Therapy. 2018;25:106-116. https://doi.org/10.1038/s41417-018-0019-0
52. Brown C. E., Warden C. D., Starr R., Deng X., Badie B.[et al.]. Glioma IL13Rα2 is associated with mesenchymal signature gene 592 expression and poor patient prognosis. PLoS One. 2013;8(10):e77769. https://doi.org/10.1371/journal.pone.0077769
53. Hung A. L., Garzon-Muvdi T., Lim M. Biomarkers and Immunotherapeutic Targets in Glioblastoma. World Neurosurg. 2017;102:494-506. https://doi.org/10.1016/j.wneu.2017.03.011
54. Vainchtein I. D., Chin G., Cho F. S., Kelley K. W., Miller J. G. [et al.]. Astrocyte-derived interleukin-33 promotes microglial synapse engulfment and neural circuit development. Science. 2018;359(6381):1269-1273. https://doi.org/10.1126/science.aal3589
55. Gramatzki D., Fre K., Cathomas G., Moch H., Weller M., Mertz K. D. Interleukin-33 in human gliomas: Expression and prognostic significance. Oncology Letters. 2016;12:445-452. https://doi.org/10.3892/ol.2016.4626
56. Groves M. D., Puduvalli V. K., Gilbert M. R., Levin V. A., Conrad C. A. [et al.]. Two phase II trials of temozolomide with interferon-α2b (pegylated and non-pegylated) in patients with recurrent glioblastoma multiforme. Br. J. Cancer. 2009;101(4):615-620. https://doi.org/10.1038/sj.bjc.6605189
57. Shen D., Guo C. C., Wang J., Qiu Z. K., Sai K. [et al.]. Interferon-α/β enhances temozolomide activity against MGMT-positive glioma stem-like cells. Oncology Reports. 2015;34:2715-2721. https://doi.org/10.3892/or.2015.4232
58. Deniz C. D., Gürbilek M., Koc M. Prognostic value of interferon-gamma, interleukin-6, and tumor necrosis factor-alpha in the radiation response of patients diagnosed with locally advanced non-small-cell lung cancer and glioblastoma multiforme. Turk. J. Med. Sci. 2018;48(1):117-123. https://doi.org/10.3906/sag-1611-77
59. Wolff J. E., Wagner S., Reinert C., Gnekow A., Kortmann R. D. [et al.]. Maintenance treatment with interferongamma and low-dose cyclophosphamide for pediatric high-grade glioma. J. Neurooncol. 2006;79(3):315-321. https://doi.org/10.1007/s11060-006-9147-8

Keywords: glioblastoma, low-grade glial tumors, cytokine microenvironment of glial tumors


Founders:
Stavropol State Medical Academy
Pyatigorsk State Research Institute of Balneotherapeutics
Pyatigorsk State Pharmaceutical Academy