logo
Medical news
of the North Caucasus
Scientific journal
Mass media registration certificate dated December 7, 2006.
Series ПИ #ФС 77-26521.
Federal service for surveillance over non-violation of the legislation in the sphere of mass communications and protection of cultural heritage.
ISSN 2073-8137
rus
русский
eng
english

Site search



Correspondence address
310 Mira Street, Stavropol, Russia, 355017

Tel
+7 865 2352511, +7 865 2353229.

E-mail
medvestnik@stgmu.ru

Biointegration of anterior cruciate ligament protesis made of polyethylene tetraftalate in late postoperation period

[Notes from practice]
Victor Bogatov; Alexey Vladimirovich Lychagin; Vyacheslav Germanov;

The purpose of the study was to show the long – term results of biointegration of the anterior cruciate ligament (ACL) prosthesis made of polyethylene tetraphthalate (PET) in the human knee joint tissue on a clinical example. The intraoperative material of the ACL prosthesis was obtained from a patient who received a repeated knee joint injury, which required replacement of the implant. Histological studies of the sample, which was implanted into the human knee joint for 2 years, were performed. It was shown that the prosthesis of ACL made of PET is capable of biointegration and restructuring into a structure similar in its cellular composition to the ligament. There was no cellular reaction of foreign material rejection and polymer degradation under the influence of proteases. Pet-based polymers have good biocompatibility with human knee joint tissues.

Download

References:
1. Bogatov V. B., Sadykov R. S., Ponamarev I. R. The formation of synovial cyst in tibial tunnel after ACL reconstruction. Travmatologyia i ortopedyia Rossii. – Traumatology and Orthopedics of Russia. 2017;23(2):59-65. (In Russ.).
https://doi.org/10.21823/2311-2905-2017-23-2-59-65
2. Bogatov V. B., Lychagin A. V., Drogin A. R., Chekulaev E. A. Mechanical stiffness of fixation of the ACL implants. Rossysky zhurnal biomekhaniki. – Russian journal of biomechanics. 2018;22(3):390-397. (In Russ.).
https://doi.org/10.15593/RZhBiomeh/2018.3.09
3. Sadykov R. S., Bogatov V. B., Norkin A. I. The results of ACL reconstruction in children with open growth zones. Ortopediya, travmatologiya i vosstanovitelnaya khirurgiya detskogo vozrasta. – Orthopedics, traumatology and reconstructive surgery in children. 2016;4(3):26-31. (In Russ.).
https://doi.org/10.17816/PTORS4326-3
4. Karaseva T. Yu., Karasev E. A. Arthroscopy technologies in treatment of patients with the knee instability. Geny ortopedii. – Genius of Orthopedics. 2013;4:38-43. (In Russ.).
5. Batty L. M., Norsworthy C. J., Lash N. J. [et al.]. Synthetic devices for reconstructive surgery of the cruciate ligaments: a systematic review. Arthroscopy. 2015;31(5):957-968.
https://doi.org/10.1016/j.arthro.2014.11.032
6. Sun J., Wei X. C., Li L. [et al.]. Autografts vs Synthetics for Cruciate Ligament Reconstruction: A Systematic Review and Meta-Analysis. Orthopaedic surgery. 2020;12(2):378-387.
https://doi.org/10.1111/os.12662
7. Mengsteab P. Y., Nair L. S., Laurencin C. T. The past, present and future of ligament regenerative engineering. Regen. Med. 2016;11(8):871-881.
https://doi.org/10.2217/rme-2016-0125
8. Marieswaran M., Jain I., Garg B. [et al.]. A review on biomechanics of anterior cruciate ligament and materials for reconstruction. Appl. Bionics. Biomech. 2018:4657824.
https://doi.org/10.1155/2018/4657824
9. Nyland J., Mattocks A., Kibbe S. Anterior cruciate ligament reconstruction, rehabilitation, and return to play: 2015 update. Open Access. J. Sports Med. 2016;7:21-32.
https://doi.org/10.2147/OAJSM.S72332
10. Leong N. L., Petrigliano F. A., McAllister D. R. Current tissue engineering strategies in anterior cruciate ligament reconstruction. J. Biomed. Mater. Res. 2014;102(5):1614-1624.
https://doi.org/10.1002/jbm.a.34820
11. Keselowsky B. G., Bridges A. W., Burns K. L. [et al.]. Role of plasma fibronectin in the foreign body response to biomaterials. Biomaterials. 2007;28(25):3626-3631.
https://doi.org/10.1016/j.biomaterials.2007.04.035
12. Vaquette C., Viateau V., Guérard S. [et al.]. The effect of polystyrene sodium sulfonate grafting on polyethylene terephthalate artificial ligaments on in vitro mineralisation and in vivo bone tissue integration. Biomaterials. 2013;34(29):7048-7063.
https://doi.org/10.1016/j.biomaterials.2013.05.058
13. Chen J., Gu A., Jiang H., Zhang W., Yu X. A comparison of acute and chronic anterior cruciate ligament reconstruction using LARS artificial ligaments: a randomized prospective study with a 5-year follow-up. Arch. Orthop. Trauma Surg. 2015;135(1):95-102.
https://doi.org/10.1007/s00402-014-2108-3
14. Li H., Chen S., Chen J., Chang J., Xu M. [et al.]. Musselinspired artificial grafts for functional ligament reconstruction. ACS Appl. Mater. Interfaces. 2015;7(27):14708-14719.
https://doi.org/10.1021/acsami.5b05109
15. Chen C., Li H., Guo C., Chen S. Preparation and in vitro evaluation of a biomimetic nanoscale calcium phosphate coating on a polyethylene terephthalate artificial ligament. Exp. Ther. Med. 2016;12(1):302-306.
https://doi.org/10.3892/etm.2016.3269
16. Iliadis D. P., Bourlos D. N., Mastrokalos D. S., Chronopoulos E., Babis G. C. LARS Artificial ligament versus ABC purely polyester ligament for anterior cruciate ligament reconstruction. Orthop. J. Sports Med. 2016;4(6):2325967116653359.
https://doi.org/10.1177/2325967116653359
17. Yu S., Yang R. H., Zuo Z. N, Dong Q. R. Histological characteristics and ultrastructure of polyethylene terephthalate LARS ligament after the reconstruction of anterior cruciate ligament in rabbits. Int. J. Clin. Exp. Med. 2014;7(9):2511-2518.

Keywords: anterior cruciate ligament, implant, polyethylene terephthalate


Founders:
Stavropol State Medical Academy
Pyatigorsk State Research Institute of Balneotherapeutics
Pyatigorsk State Pharmaceutical Academy