logo
Medical news
of the North Caucasus
Scientific journal
Mass media registration certificate dated December 7, 2006.
Series ПИ #ФС 77-26521.
Federal service for surveillance over non-violation of the legislation in the sphere of mass communications and protection of cultural heritage.
ISSN 2073-8137
rus
русский
eng
english

Site search



Correspondence address
310 Mira Street, Stavropol, Russia, 355017

Tel
+7 865 2352511, +7 865 2353229.

E-mail
medvestnik@stgmu.ru

Singlenucleotide polymorphisms in cytokine genes and their role in the pathogenesis of cardiac , vascular and pulmonary diseases

[Reviews]
Pirozhkov Sergey; Danil Igorevich Peregud; Natalia Nikolaevna Terebilina; Petr Frantsevich Litvitsky; Ekaterina Nikolaevna Kabaeva;

The purpose of the literature review is to analyze the current data on the influence of cytokine gene polymorphisms on the occurrence, course, manifestations and outcomes of the most common cardiac, vascular and pulmonary diseases, in the pathogenesis of which inflammation plays a significant role. The range of cytokines under consideration includes classes that potentiate the inflammatory process (pro inflammatory cytokines), which include TNF-α, IL-1, IL-6, IL-12, IL- 13, IL-17 and IL-33, and its inhibitors (anti-inflammatory), such as IL-10, IL-4, TGF-β. The role of cytokine polymorphisms in the development of dilated cardiomyopathy, ischemic heart disease, heart failure, stroke, bronchial asthma and chronic obstructive pulmonary disease is discussed. The data obtained so far indicate that the content and severity of the effect of cytokine gene polymorphisms on the pathological process depends on the polymorphic locus location, its effect on gene expression, the combination of polymorphism alleles and the ethnic characteristics of patients.

Download

References:
1. Liaquat A., Shauket U., Ahmad W., Javed Q. The tumor necrosis factor-α –238G/A and IL-6 –572G/C gene polymorphisms and the risk of idiopathic dilated cardiomyopathy: a meta-analysis of 25 studies including 9493 cases and 13,971 controls. Clinical Chemistry and Laboratory Medicine. 2015;53(2):307-318. https://doi.org/10.1515/cclm-2014-0502
2. Liaquat A., Asifa G. Z, Zeenat A., Javed Q. Polymorphisms of tumor necrosis factor-alpha and interleukin-6 gene and C-reactive protein profiles in patients with idiopathic dilated cardiomyopathy. Annals of Saudi Medicine. 2014;34(5):407-414. https://doi.org/10.5144/0256-4947.2014.407
3. Zhang Y., Cao Y., Xin L., Gao N., Liu B. Association between rs1800629 polymorphism in tumor necrosis factor-α gene and dilated cardiomyopathy susceptibility. Medicine. 2018;97:e13386. https://doi.org/10.1097/md.0000000000013386
4. Spiroska V., Kedev S., Antov S., Trajkov D., Petlichkovski A. [et al.]. Association between 22 cytokine gene polymorphisms and dilated cardiomyopathy in macedonian patients. Kardiologia Polska. 2009;67(11):1237-1247.
5. Adamopoulos S., Kolokathis F., Gkouziouta A., Georgiadou P., Chaidaroglou A. [et al.]. Cytokine gene polymorphisms are associated with markers of disease severity and prognosis in patients with idiopathic dilated cardiomyopathy. Cytokine. 2011;54(1):68-73. https://doi.org/10.1016/j.cyto.2011.01.004
6. Zhang P., Wu X., Li G., He Q., Dai H. [et al.]. Tumor necrosis factor-alpha gene polymorphisms and susceptibility to ischemic heart disease: A systematic review and meta-analysis. Medicine. 2017;96(14):e6569. https://doi.org/10.1097/md.0000000000006569
7. Mastana S., Prakash S., Akam E. C., Kirby M., Lindley M. R. [et al.]. Genetic association of proinflammatory cytokine gene polymorphisms with coronary artery disease (CAD) in a North Indian population. Gene. 2017;628(10):301-307. https://doi.org/10.1016/j.gene.2017.07.050
8. Tabaei S., Motallebnezhad M., Tabaee S. S. Systematic review and meta-analysis of association of polymorphisms in inflammatory cytokine genes with coronary artery disease. Inflammation Research. 2020;69:1001-1013. https://doi.org/10.1007/s00011-020-01385-3
9. Zhang T., Wang Z., Xiao W. A meta-analysis of interleukin- 6 -572G>C polymorphism and coronary heart disease susceptibility. Cardiology Journal. 2017;24(1):107-110. https://doi.org/10.5603/cj.2017.0008
10. Hou H., Wang C., Sun F., Zhao L., Dun A. [et al.]. Association of interleukin-6 gene polymorphism with coronary artery disease: an updated systematic review and cumulative meta-analysis. Inflammation Research. 2015;64:707-720. https://doi.org/10.1007/s00011-015-0850-9
11. Chen H., Ding S., Liu X., Wu Y., Wu X. Association of interleukin- 6 genetic polymorphisms and environment factors interactions with coronary artery disease in a Chinese Han population. Clinical and Experimental Hypertension. 2018;40(6):514-517. https://doi.org/10.1080/10641963.2017.1403618
12. Haroon J., Hussain S., Javed Q. Heritability of IL-1A gene promoter polymorphism in patients with coronary artery disease: A trio-family study. Laboratory Medicine. 2015;46(1):20-25. https://doi.org/10.1309/LM1SAPZQRNQT4BO9
13. Mahmoudi M. J., Taghvaei M., Harsini S., Amirzargar A. A., Hedayat M. [et al.]. Association of interleukin 1 gene cluster and interleukin 1 receptor gene polymorphisms with ischemic heart failure. Bratislava Medical Journal. 2016;117(7):367-370. https://doi.org/10.4149/bll_2016_072
14. Rojas J. M., Avia M., Martin V., Sevilla N. IL-10: a multifunctional cytokine in viral infections. Journal of Immunology Research. 2017;2017:6104054. https://doi.org/10.1155/2017/6104054
15. Xuan Y., Wang L., Zhi H., Li X., Wei P. Association Between 3 IL-10 gene polymorphisms and cardiovascular disease risk: Systematic review with meta-analysis and trial sequential analysis. Medicine. 2016;95:e2846. https://doi.org/10.1097/md.0000000000002846
16. Kumari R., Kumar S., Ahmad M. K., Singh R., Kumar S. K. [et al.]. Promoter variants of TNF-α rs1800629 and IL-10 rs1800871 are independently associated with the susceptibility of coronary artery disease in north Indian. Cytokine. 2018;110:131-136. https://doi.org/10.1016/j.cyto.2018.04.035
17. Lu Y., Boer J. M. A., Barsova R. M., Favorova O., Goel A. [et al.]. TGFB1 genetic polymorphisms and coronary heart disease risk: A meta-analysis. BMC Medical Genetics. 2012;13:39. https://doi.org/10.1186/1471-2350-13-39
18. Kumar P., Misra S., Kumar A., Pandit A. K., Chakravarty K.,Prasad K. Association between tumor necrosis factor-α (-238G/A and -308G/A) gene polymorphisms and risk of ischemic stroke: A meta-analysis. Pulse. 2016;3:217-228. https://doi.org/10.1159/000443770
19. Wu J.-C., Zhang X., Wang J.-H., Liu Q.-W., Wang X.-Q. Gene polymorphisms and circulating levels of the TNF-alpha are associated with ischemic stroke: A meta-analysis based on 19,873 individuals. International Immunopharmacology. 2019;75:105827. https://doi.org/10.1016/j.intimp.2019.105827
20. Misra S., Kumar P., Kumar A., Sagar R., Chakravarty K., Prasad K. Genetic association between inflammatory genes (IL-1α, CD14, LGALS2, PSMA6) and risk of ischemic stroke: A meta-analysis. Meta Gene. 2016;8:21-29. https://doi.org/10.1016/j.mgene.2016.01.003
21. Chehaibi K., Hrira M. Y., Trabelsi I., Escolà-Gil J. C., Slimane M. N. Gene variant and level of IL-1β in ischemic stroke patients with and without type 2 diabetes mellitus. Journal of Molecular Neuroscience. 2015;57:404-409. https://doi.org/10.1007/s12031-015-0614-6
22. Huang H. T., Lu Y. L., Wang R., Qin H. M., Wang C. F. [et al.]. The association of IL-17A polymorphisms with IL-17A serum levels and risk of ischemic stroke. Oncotarget. 2017;8:103499-103508. https://doi.org/10.18632/oncotarget.21498
23. Zhou L., Zhu X., Wang J., Cheng Y., Ma A., Pan X. Association between interleukin-18 (137G/C and 607C/A) gene polymorphisms and risk of ischemic stroke: A metaanalysis. NeuroReport. 2019;30(2):89-94. https://doi.org/10.1097/WNR.0000000000001165
24. He W., Song H., Ding L., Li C., Dai L., Gao S. Association between IL-10 gene polymorphisms and the risk of ischemic stroke in a Chinese population. International Journal of Clinical and Experimental Pathology. 2015;8(10):13489-13494.
25. Li W. Z., Gao C. Y., He W. L., Zhang H. M. Association of the interleukin-10 gene -1082A/G genetic polymorphism with risk of ischemic stroke in a Chinese population. Genet. Mol. Res. 2016;15(1). https://doi.org/10.4238/gmr.15017541
26. Kumar P., Yadav A. K., Misra S., Kumar A., Chakravarty K. [et al.]. Role of Interleukin-10 (-1082A/G) gene polymorphism with the risk of ischemic stroke: a metaanalysis. Neurological Research. 2016;38(9):823-830. https://doi.org/10.1080/01616412.2016.1202395
27. Kumar P., Kumar A., Sagar R., Misra S., Faruq M. [et al.]. Association between interleukin-6 (G174C and C572G) promoter gene polymorphisms and risk of ischemic stroke in North Indian population: a case-control study. Neurological Research. 2016;38:69-74. https://doi.org/10.1080/01616412.2015.1133028
28. Kumar P., Misra S., Yadav A.K., Kumar A., Sriwastva M., Prasad K. Relationship between interleukin-6 (–174G/C and –572C/G) promoter gene polymorphisms and risk of intracerebral hemorrhage: A meta-analysis. Pulse. 2016;4:61-68. https://doi.org/10.1159/000447677
29. Kumar P., Kumar A., Misra S., Sagar R., Farooq M. Association of transforming growth factor-β1 gene C509T, G800A and T869C polymorphisms with intracerebral hemorrhage in North Indian Population: a case-control study. Neurological Sciences. 2016;37:353-359. https://doi.org/10.1007/s10072-015-2426-4
30. Bullens D. M., Truyen E., Coteur L., Dilissen E., Hellings P. W. [et al.]. IL-17 mRNA in sputum of asthmatic patients: Linking T cell driven inflammation and granulocytic influx? Respiratory Research. 2006;7:135. https://doi.org/10.1186/1465-9921-7-135
31. Maalmi H., Beraies A., Charad R., Ammar J., Hamzaoui K., Hamzaoui A. IL-17A and IL-17F genes variants and susceptibility to childhood asthma in Tunisia. Journal of Asthma. 2014;51:348-354. https://doi.org/10.3109/02770903.2013.876647
32. Zhai C., Li S., Feng W., Shi W., Wang J. [et al.]. Association of interleukin-17a rs2275913 gene polymorphism and asthma risk: a meta-analysis. Archives of Medical Science. 2018;6:1204-1211. https://doi.org/10.5114/aoms.2018.73345
33. Sobkowiak P., Wojsyk-Banaszak I., Kowalewska M., Wasilewska E., Langwiński W. [et al.]. Interleukin 1β polymorphism and serum level are associated with pediatric asthma. Pediatric Pulmonology. 2017;52:1565-1571. https://doi.org/10.1002/ppul.23893
34. Shen T.-C., Tsai C.-W., Chang W.-S., Wang S., Chao C.-Y. [et al.]. Association of interleukin-12A rs568408 with susceptibility to asthma in Taiwan. Scientific Reports. 2017;7:3199. https://doi.org/10.1038/s41598-017-03523-0
35. Akdis M., Aab A., Altunbulakli C., Azkur K., Costa R. A. [et al.]. Interleukins (from IL-1 to IL-38), interferons, transforming growth factor b, and TNF-a: Receptors, functions, and roles in diseases. Journal of Allergy and Clinical Immunology. 2016;138(4):984-1010. https://doi.org/10.1016/j.jaci.2016.06.033
36. Xu Y., Li J., Ding Z., Li J., Li B. [et al.]. Association between IL-13 +1923C/T polymorphism and asthma risk: A meta-analysis based on 26 case-control studies. Bioscience Reports. 2017;37(1):BSR20160505. https://doi.org/10.1042/bsr20160505
37. Charrada R., Kaabachia W., Berraiesa A., Hamzaouia K., Hamzaoui A. IL-33 gene variants and protein expression in pediatric Tunisian asthmatic patients. Cytokine. 2018;104:85-91. https://doi.org/10.1016/j.cyto.2017.09.028
38. Matloubi M., Ranjbar M., Assarehzadegan M.-A., Fallahpour M., Sadeghi F. The impact of interleukin (IL)-33 gene polymorphisms and environmental factors on risk of asthma in the Iranian population. Lung. 2020;198:105-112. https://doi.org/10.1007/s00408-019-00301-9
39. Kang S. W., Kim S. K., Han Y. R., Hong D. W., Chon J. [et al.]. CRP/IL-6/IL-10 single-nucleotide polymorphisms correlate with the susceptibility and severity of community-acquired pneumonia. Genetic Testing and Molecular Biomarkers. 2019;23:363-372. https://doi.org/10.1089/gtmb.2016.0156
40. Li F., Xie X., Li S., Ke R., Zhu B. [et al.]. Interleukin-6 gene –174G/C polymorphism and bronchial asthma risk: A meta-analysis. International Journal of Clinical and Experimental Medicine. 2015;8:12601-12608.
41. Liu Z., Li J., Wang K., Tan Q., Tan W., Guo G. Association between TGF-β1 polymorphisms and asthma susceptibility among the Chinese: A meta-analysis. Genetic Testing and Molecular Biomarkers. 2018;22:433-442. https://doi.org/10.1089/gtmb.2017.0238
42. Hussein I. A., Jaber S. H. Genotyping of IL-4 –590 (C>T) gene in Iraqi asthma patients. Disease Markers. 2017;2017:5806236. https://doi.org/10.1155/2017/5806236
43. Imani D., Eslami M. M., Anani-Sarab G., Aliyu M., Razi B., Rezaei R. Interleukin-4 gene polymorphism (C33T) and the risk of the asthma: a meta-analysisbased on 24 publications. BMC Medical Genetics. 2020;21:232. https://doi.org/10.1186/s12881-020-01169-w
44. Liao N., Zhao H., Chen M.-L., Xie Z.-F. Association between the TGF-β1 polymorphisms and chronic obstructive pulmonary disease: A meta-analysis. Bioscience Reports. 2017;37:20170747. https://doi.org/10.1042/bsr20170747
45. Kirtipal N., Thakur H., Sobti R. C., Janmeja A. K. Association between IL-6 gene polymorphism and the risk of chronic obstructive pulmonary disease in the North Indian population. Molecular Biology Research Communications. 2020;9:41-43. https://doi.org/10.22099/mbrc.2019.34594.1431
46. Ponce-Gallegos M. A., Pérez-Rubio G., Ambrocio-Ortiz E., Partida-Zavala N., Hernández-Zenteno R. [et al.]. Genetic variants in IL17A and serum levels of IL-17A are associated with COPD related to tobacco smoking and biomass burning. Scientific Reports. 2020;10:784. https://doi.org/10.1038/s41598-020-57606-6

Keywords: cytokines, single nucleotide polymorphism, dilated cardiomyopathy, stroke, bronchial asthma, chronic obstructive pulmonary disease


Founders:
Stavropol State Medical Academy
Pyatigorsk State Research Institute of Balneotherapeutics
Pyatigorsk State Pharmaceutical Academy