Medical news
of the North Caucasus
Scientific journal
Mass media registration certificate dated December 7, 2006.
Series ПИ #ФС 77-26521.
Federal service for surveillance over non-violation of the legislation in the sphere of mass communications and protection of cultural heritage.
ISSN 2073-8137

Site search

Correspondence address
310 Mira Street, Stavropol, Russia, 355017

+7 8652 352524; +7 8652 353229.

+7 8652 352524.


Molecular aspects of alcoholic liver fibr

Yana Valerievna Kiseleva; Yuri Zharikov; Roman Vyacheslavovich Maslennikov; Chavdar Pavlov; Vladimir Nikolenko;

Liver fibrosis is a pathological process caused by chronic hepatic alteration of different etiology that features the excessive production of connective tissue by activated hepatic stellate cells (HSC). One of the most significant and prevalent fibrogenic factors is alcohol toxicity. Activation of HSC is the result of a variety of molecular fibrogenic pathways interaction, which is initiated by intra-, extracellular and intra-, extrahepatic triggers. Enhancing knowledge of these pathological pathways can facilitate improved prognosis and therapy of alcoholic liver disease.


. Böttcher K., Pinzani M. Pathophysiology of liver fibrosis and the methodological barriers to the development of anti-fibrogenic agents. Adv. Drug. Deliv. Rev. 2017;121:3-8. https://doi.org/10.1016/j.addr.2017.05.016
2. Llovet J. M., Zucman-Rossi J., Pikarsky E., Sangro B., Schwartz M. [et al.]. Hepatocellular carcinoma. Nat. Rev. Dis. Primers. 2016;2:16018. https://doi.org/10.1038/nrdp.2016.18
3. Cohen S. M. Alcoholic liver disease. Clin. Liver. Dis. 2016;20(3). https://doi.org/10.1016/j.cld.2016.05.001
4. Ivashkin V. T., Mayevskaya M. V., Pavlov Ch. S, Sivolap Yu. P., Lunkov V. D. [et al.]. Management of adult patients with alcoholic liver disease: clinical guidelines of the Russian Scientific Liver Society. Ross. z. gastroenterol., gepatol., koloproktol. – Russian J. Gastroenterol., Hepatol., Coloproctol. 2017;27(6). (In Russ.). https://doi.org/10.22416/1382-4376-2017-27-6-20-40
5. Semenova V. G., Sabgayda T. P., Mikhailov A. Yu., Zaporozhchenko V. G., Evdokushkina G. N., Gavrilova N. S. Mortality of the russian population from alcoholrelated causes in the 2000s. Sotsialnye aspekty zdorovya naseleniya. – Social aspects of population health. 2018;1(59):3. (In Russ.). https://doi.org/10.21045/2071-5021-2018-59-1-3
6. Bogomolov P. O., Matsievich M. V., Bueverov A. O., Kokina K. Y., Voronkova N. V., Beznosenko V. D. Liver cirrhosis in the Moscow Region: figures and facts. Almanakh klinicheskoy meditsiny. – Almanac of Clinical Medicine. 2018;46(1):59- 67. (In Russ.). https://doi.org/10.18786/2072-0505-2018-46-1-59-67
7. Pavlov Ch. S., Zolotarevsky V. B., Tomkevich M. S., Kogan Ye. A., Ivashkin V. T. An option of reversible development of liver cirrhosis (clinical and pathogenetic prerequisites). Ross. z. gastroenterol., gepatol., koloproktol. – Russian J. Gastroenterol., Hepatol., Coloproctol. 2006;16(1):20-29. (In Russ.).
8. Higashi T., Friedman S. L., Hoshida Y. Hepatic stellate cells as key target in liver fibrosis. Adv. Drug. Deliv. Rev. 2017;121:27-42. https://doi.org/10.1016/j.addr.2017.05.007
9. Pinzani M. Pathophysiology of liver fibrosis. Dig. Dis. 2015;33(4):492-497. https://doi.org/10.1159/000374096
10. Senoo H., Mezaki Y., Fujiwara M. The stellate cell system (vitamin A-storing cell system). Anat. Sci. Int. 2017;92(4):387-455. https://doi.org/10.1007/s12565-017-0395-9
11. Lee Y. A., Wallace M. C., Friedman S. L. Pathobiology of liver fibrosis: a translational success story. Gut. 2015;64(5):830-841. https://doi.org/10.1136/gutjnl-2014-306842
12. Zhang C. Y., Yuan W. G., He P., Lei J. H., Wang C. X. Liver fibrosis and hepatic stellate cells: etiology, pathological hallmarks and therapeutic targets. World J. Gastroenterol. 2016;22(48):10512-10522. https://doi.org/10.3748/wjg.v22.i48.10512
13. Stickel F., Datz C., Hampe J., Bataller R. Pathophysiology and management of alcoholic liver disease: update 2016. Gut Liver. 2017;11(2):173-188. https://doi.org/10.5009/gnl16477
14. Gao B., Bataller R. Liver fibrosis in alcoholic liver disease. Semin. Liver Dis. 2015;35(2):146-156. https://doi.org/10.1055/s-0035-1550054
15. Tsuchida T., Friedman S. L. Mechanisms of hepatic stellate cell activation. Nat. Rev. Gastroenterol. Hepatol. 2017;14(7):397-411. https://doi.org/10.1038/nrgastro.2017.38
16. Xu F., Liu C., Zhou D., Zhang L. TGF-a/SMAD pathway and its regulation in hepatic fibrosis. J. Histochem. Cytochem. 2016;64(3):157-167. https://doi.org/10.1369/0022155415627681
17. Wu S. P., Yang Z., Li F. R., Liu X. D., Chen H. T., Su D. N. Smad7-overexpressing rat BMSCs inhibit the fibrosis of hepatic stellate cells by regulating the TGF-a1/Smad signaling pathway. Exp. Ther. Med. 2017;14(3):2568-2576. https://doi.org/10.3892/etm.2017.4836
18. Ceni E., Mello T., Galli A. Pathogenesis of alcoholic liver disease: Role of oxidative metabolism. World J. Gastroenterol. 2014;20(47):17756-17772. https://doi.org/10.3748/wjg.v20.i47.17756
19. Luangmonkong T., Suriguga S., Mutsaers H. A. M., Groothuis G. M. M., Olinga P., Boersema M. Targeting oxidative stress for the treatment of liver fibrosis. Rev. Physiol. Biochem. Pharmacol. 2018;175:71-102. https://doi.org/10.1007/112_2018_10
20. Cai Y., Huang G., Ma L., Dong L., Chen S. [et al.]. Smurf2, an E3 ubiquitin ligase, interacts with PDE4B and attenuates liver fibrosis through miR-132 mediated CTGF inhibition. Biochim. Biophys. Acta. Mol. Cell. Res. 2018;1865(2):297-308. https://doi.org/10.1016/j.bbamcr.2017.10.011
21. Klinkhammer B. M., Floege J., Boor P. PDGF in organ fibrosis. Mol. Aspects. Med. 2018;62:44-62. https://doi.org/10.1016/j.mam.2017.11.008
22. Borkham-Kamphorst E., Weiskirchen R. The PDGF system and its antagonists in liver fibrosis. Cytokine Growth Factor Rev. 2016;28:53-61. https://doi.org/10.1016/j.cytogfr.2015.10.002
23. Liu J. Ethanol and liver: recent insights into the mechanisms of ethanol-induced fatty liver. World J. Gastroenterol. 2014;20(40):14672-14685. https://doi.org/10.3748/wjg.v20.i40.14672
24. Li S., Tan H. Y., Wang N., Zhang Z. J., Lao L. [et al.]. The role of oxidative stress and antioxidants in liver diseases. Int. J. Mol. Sci. 2015;16(11):26087-26124. https://doi.org/10.3390/ijms161125942
25. Yang Y. M., Seki E. TNFa in liver fibrosis. Curr. Pathobiol. Rep. 2015;3(4):253-261. https://doi.org/10.1007/s40139-015-0093-z
26. Zhao Z. M., Liu H. L., Sun X., Guo T., Shen L. [et al.]. Levistilide A inhibits angiogenesis in liver fibrosis via vascular endothelial growth factor signaling pathway. Exp. Biol. Med. (Maywood). 2017;242(9):974-985. https://doi.org/10.1177/1535370217701005
27. Mihm S. Danger-associated molecular patterns (DAMPs): molecular triggers for sterile inflammation in the liver. Int. J. Mol. Sci. 2018;19(10). https://doi.org/10.3390/ijms19103104
28. Magdaleno F., Blajszczak C., Nieto N. Key events participating in the pathogenesis of alcoholic liver disease. Biomolecules. 2017;7(1). https://doi.org/10.3390/biom7010009
29. Yang H., Wang H., Chavan S. S., Andersson U. High mobility group box protein 1 (HMGB1): the prototypical endogenous danger molecule. Mol. Med. 2015;21 (Suppl.1):S6-S12. https://doi.org/10.2119/molmed.2015.00087
30. Gaskell H., Ge X., Nieto N. High-mobility group box-1 and liver disease. Hepatol. Commun. 2018;2(9):1005-1020. https://doi.org/10.1002/hep4.1223
31. Cassard A. M., Gerard P., Perlemuter G. Microbiota, liver diseases, and alcohol. Microbiol. Spectr. 2017;5(4). https://doi.org/10.1128/microbiolspec.bad-0007-2016
32. Tilg H., Cani P. D., Mayer E. A. Gut microbiome and liver diseases. Gut. 2016;65(12):2035-2044. https://doi.org/10.1136/gutjnl-2016-312729
33. Bajaj J. S. Alcohol, liver disease and the gut microbiota. Nat. Rev. Gastroenterol. Hepatol. 2019;16(4):235-246. https://doi.org/10.1038/s41575-018-0099-1
34. Kiziltas S. Toll-like receptors in pathophysiology of liver diseases. World J. Hepatol. 2016;8(32):1354-1369. https://doi.org/10.4254/wjh.v8.i32.1354
35. Seki E., Brenner D. A. Recent advancement of molecular mechanisms of liver fibrosis. J. Hepatobiliary Pancreat. Sci. 2015;22(7):512-8. https://doi.org/10.1002/jhbp.245
36. Forsyth C. B., Voigt R. M., Burgess H. J., Swanson G. R., Keshavarzian A. Circadian rhythms, alcohol and gut interactions. Alcohol. 2015;49(4):389-398. https://doi.org/10.1016/j.alcohol.2014.07.021
37. Gual P., Gilgenkrantz H., Lotersztajn S. Autophagy in chronic liver diseases: the two faces of Janus. Am. J. Physiol. Cell. Physiol. 2017;312(3):C263-C273. https://doi.org/10.1152/ajpcell.00295.2016
38. Lodder J., Denas T., Chobert M. N., Wan J., El-Benna J. [et al.]. Macrophage autophagy protects against liver fibrosis in mice. Autophagy. 2015;11(8):1280-1292. https://doi.org/10.1080/15548627.2015.1058473
39. Teschke R. Alcoholic liver disease: alcohol metabolism, cascade of molecular mechanisms, cellular targets, and clinical aspects. Biomedicines. 2018;6(4):E106. https://doi.org/10.3390/biomedicines6040106
40. Teschke R. Alcoholic liver disease: current mechanistic aspects with focus on their clinical relevance. Biomedicines. 2019;7(3):E68. https://doi.org/10.3390/biomedicines7030068
41. Peter Guengerich F., Avadhani N. G. Roles of cytochrome P450 in metabolism of ethanol and carcinogens. Adv. Exp. Med. Biol. 2018;1032:15-35. https://doi.org/10.1007/978-3-319-98788-0_2
42. Tai C. J., Choong C. Y., Lin Y. C., Shi Y. C., Tai C. J. The anti-hepatic fibrosis activity of ergosterol depended on upregulation of PPARgamma in HSC-T6 cells. Food. Funct. 2016;7(4):1915-1923. https://doi.org/10.1039/c6fo00117c
43. Kema V. H., Mojerla N. R., Khan I., Mandal P. Effect of alcohol on adipose tissue: a review on ethanol mediated adipose tissue injury. Adipocyte. 2015;4(4):225-231. https://doi.org/10.1080/21623945.2015.1017170
44. Udomsinprasert W., Honsawek S., Poovorawan Y. Adiponectin as a novel biomarker for liver fibrosis. World J. Hepatol. 2018;10(10):708-718. https://doi.org/10.4254/wjh.v10.i10.708
45. Buechler C., Haberl E. M., Rein-Fischboeck L., Aslanidis C. Adipokines in liver cirrhosis. Int. J. Mol. Sci. 2017;18(7):E1392. https://doi.org/10.3390/ijms18071392

Keywords: аlcoholic liver fibrosis, pathological pathways, molecular factors

Stavropol State Medical Academy
Pyatigorsk State Research Institute of Balneotherapeutics
Pyatigorsk State Pharmaceutical Academy