logo
Medical news
of the North Caucasus
Scientific journal
Mass media registration certificate dated December 7, 2006.
Series ПИ #ФС 77-26521.
Federal service for surveillance over non-violation of the legislation in the sphere of mass communications and protection of cultural heritage.
ISSN 2073-8137
rus
русский
eng
english

Site search



Correspondence address
310 Mira Street, Stavropol, Russia, 355017

Tel
+7 865 2352511, +7 865 2353229.

E-mail
medvestnik@stgmu.ru

Pseudomonas aeruginosa. Assistants and competitors in the microbiome of infected of cystic fibrosis patients’ lungs

[Cystic fibrosis]
Olga Lvovna Voronina; Natalia Nikolaevna Ryzhova; Marina Sergeevna Kunda; Ekaterina Ivanovna Aksenova; Akhatovna Zigangirova Nailya; Lydia Nikolaevna Kapotina; Stanislava Andreevna Saidakova; Galina Alekseevna Danilina;

Pseudomonas aeruginosa aeruginosa is the most relevant pathogen in cystic fibrosis (CF). The aim of our work was to study the cytotoxicity of P. aeruginosa isolated from Russian patients with CF and to analyze the association of the presence of pseudomonas infection with the clinical parameters of patients and the composition of the microbiota. In a cohort of 751 patients, P. aeruginosa was detected in 45 %. 84 % of isolates with different genotypes of the ExoS type, characterizing the multiplicity and independence of the sources of infection of CF patients. Identification of 7 ExoU isolates, 5 of which (ST235 and ST313) had high cytotoxicity, confirms the risk of infection of CF patients with nosocomial strains. Analysis of the lung microbiome showed that P. aeruginosa is in competition with the main representatives of the «healthy» bacteriome (Actinobacteria, Bacteroidetes, Firmicutes), as well as with mycoplasma and a number of Proteobacteria taxa. At the same time, the presence of P. aeruginosa positively correlates with fungi, enterobacteria, and moraxella. A study of the combination of clinical indicators with the composition of the microbiome confirms the need to develop an antibacterial drug of selective action against microorganisms pathogenic for patients with CF.

Download

References:
1.European Cystic Fibrosis Society Patient Registry Annual Data Report 2017. Zolin A., Orenti A., Naehrlich L., van Rens J., Fox A. [et al.]. 2019. Available at: https://www.ecfs.eu/projects/ecfs-patient-registry/annual-reports. Accessed January 21, 2020.
2. Cystic Fibrosis Foundation (US) Patient Registry Annual Data Report 2017. Available at: https://www.cff.org/. Accessed January 21, 2020.
3. Brazilian Cystic Fibrosis Patient Registry 2011 Annual Report. Available at: http://www.cysticfibrosisdata.org/data-registry/brazilian-cystic-fibrosis-registry. Accessed January 21, 2020.
4. Registry of Cystic Fibrosis Patients in the Russian Federation 2017 year. Ed. by Voronkova A. Y., Amelina E. L., Kashirskaya N. Y., Kondratyeva E. I., Krasovsky S. A. [et al.]. M.: ID Medpraktika-M, 2019. (In Russ.).
5. Freschi L., Jeukens J., Kukavica-Ibrulj I., Boyle B., Dupont M. J. [et al.]. Clinical utilization of genomics data produced by the international Pseudomonas aeruginosa consortium. Front. Microbiol. 2015;6:1036. https://doi.org/10.3389/fmicb.2015.01036
6. Jeukens J., Emond-Rheault J. G., Freschi L., Kukavica-Ibrulj I., Levesque R. C. Major Release of 161 Whole-Genome Sequences from the International Pseudomonas Consortium Database. Microbiol. Res. Ann. 2019;8(13):e00013-19. https://doi.org/10.1128/MRA.00013-19
7. Ozer E. A., Nnah E., Didelot X., Whitaker R. J., Hauser A. R. The Population Structure of Pseudomonas aeruginosa Is Characterized by Genetic Isolation of exoU+ and exoS+ Lineages. Genome Biol. Evol. 2019;11(1):1780-1796. https://doi.org/10.1093/gbe/evz119
8. Finck-Barbançon V., Goranson J., Zhu L., Sawa T., Wiener-Kronish J. P. [et al.]. ExoU expression by Pseudomonas aeruginosa correlates with acute cytotoxicity and epithelial injury. Mol. Microbiol. 1997;25(3):547-557. https://doi.org/10.1046/j.1365-2958.1997.4891851.x
9. Enninga J., Rosenshine I. Imaging the assembly, structure and activity of type III secretion systems. Cell Microbiol. 2009;11(10):1462-1470. https://doi.org/10.1111/j.1462-5822.2009.01360.x
10. Ballarini A., Scalet G., Kos M., Cramer N., Wiehlmann L. [et al.]. Molecular typing and epidemiological investigation of clinical populations of Pseudomonas aeruginosa using an oligonucleotide-microarray. BMC Microbiol. 2012;12:152. https://doi.org/10.1186/1471-2180-12-152
11. Voronina O. L., Kunda M. S., Ryzhova N. N., Aksenova E. I., Sharapova N. E. [et al.]. On Burkholderiales Order Microorganisms and Cystic Fibrosis in Russia. BMC Genomics. 2018,19(Suppl 3):74. https://doi.org/10.1186/s12864-018-4472-9
12. Voronina O. L., Ryzhova N. N., Kunda M. S., Loseva E. V., Aksenova E. I. [et al.]. Characteristics of the Airway Microbiome of Cystic Fibrosis Patients. Biochemistry. 2020;85(1):1-10. https://doi.org/10.1134/S0006297920010010
13. Telenti A., Marchesi F., Balz M., Bally F., Böttger E. C. [et al.]. Rapid identification of mycobacteria to the species level by polymerase chain reaction and restriction enzyme analysis. J. Clin. Microbiol. 1993;31(2):175-178.
14. Simonova O. I., Voronina O. L., Gorinova Yu. V., Amelina E. L., Burkina N. I. [et al.]. Features of the treatment of the cystic fibrosis patient with mixt microbial respiratory infection, including Pandoraea pnomenusa. Rossijskij pediatricheskij zhurnal. – Russian pediatric journal. 2016;19(2):113-122. (In Russ.).
15. Ajayi T., Allmond L. R., Sawa T., Wiener-Kronish J. P. Single-nucleotide polymorphism mapping of the Pseudomonas aeruginosa type III secretion toxins for development of a diagnostic multiplex PCR system. J. Clin. Microbiol. 2003;41(8):3526-3531.
16. Sheremet A. B., Zigangirova N. A., Zayakin E. S., Luyksaar S. I., Kapotina L. N. [et al.]. Small Molecule Inhibitor of Type Three Secretion System Belonging to a Class 2,4-disubstituted-4H-[1,3,4]-thiadiazine-5-ones Improves Survival and Decreases Bacterial Loads in an Airway Pseudomonas aeruginosa Infection in Mice. Biomed. Res. Int. 2018;2018:5810767. https://doi.org/10.1155/2018/5810767
17. Quanjer P. H., Stanojevic S., Cole T. J., Baur X., Hall G. L. [et al.]. ERS Global Lung Function Initiative. ERS TASK FORCE REPORT. Multi-ethnic reference values for spirometry for the 3–95-yr age range: the global lung function 2012 equations. Eur. Respir. J. 2012;40:1324-1343.
18. Quanjer P. H., Stanojevic S., Cole T. J., Stocks J. Implementing GLI-2012 regression equations. Available at: http://www.ers-education.org/guidelines/global-lung-function-initiative/gli-2012-explained.aspx. Accessed January 21, 2020.
19.Chuchalin A. G., Aysanov Z. R., Chikina S. Yu., Chernyak A. V., Kalmanova E. N. Federal guidelines of Russian Respiratory Society on spirometry. Pul’monologiya. – Russian Pulmonology. 2014;(6):11-24. (In Russ.). https://doi.org/10.18093/0869-0189-2017-0-3
20. Addinsoft. XLSTAT statistical and data analysis solution. New York, USA. (2019). Available at: https://www.xlstat.com. Accessed January 21, 2020.
21. Chowdhary A., Randhawa H. S., Gaur S. N., Agarwal K., Kathuria S. [et al.]. Schizophyllum commune as an emerging fungal pathogen: a review and report of two cases. Mycoses. 2013;56(1):1-10. https://doi.org/10.1111/j.1439-0507.2012.02190.x
22. Singh A., Ralhan A., Schwarz C., Hartl D., Hector A. Fungal Pathogens in CF Airways: Leave or Treat? Mycopathologia. 2018;183(1):119-137. https://doi.org/10.1007/s11046-017-0184-y
23. Ryzhova N. N., Voronina O. L., Loseva E. V., Aksenova E. I., Kunda M. S. [et al.]. Respiratory tract microbiome in children with cystic fibrosis. Sibirskoe medicinskoe obozrenie. – Siberian Medical Review. 2019;(2):19-28. (In Russ.). https://doi.org/10.20333/2500136-2019-2-19-28

Keywords: Pseudomonas aeruginosa, cytotoxicity, microbiome, actinobacteria, fungi, spirometria


Founders:
Stavropol State Medical Academy
Pyatigorsk State Research Institute of Balneotherapeutics
Pyatigorsk State Pharmaceutical Academy