Medical news
of the North Caucasus
Scientific journal
Mass media registration certificate dated December 7, 2006.
Series ПИ #ФС 77-26521.
Federal service for surveillance over non-violation of the legislation in the sphere of mass communications and protection of cultural heritage.
ISSN 2073-8137

Site search

Correspondence address
310 Mira Street, Stavropol, Russia, 355017

+7 8652 352524; +7 8652 353229.

+7 8652 352524.


Orthotopic grafts of human malignant gliomas: history, technologies, achievements and problems

Oleg Kit; Galina Zhukova; Alexey Maksimov; Anna Sergeevna Goncharova; Eduard Evgenievich Rostorguev; Anastasia Ivanovna Zhadobina; Ivan Aleksandrovich Popov; Elena Zlatnik;

Problems of the development of human malignant gliomas` orthotopic grafts for in vivo studies, taking into account their significance for fundamental and clinical oncology, the degree to which growth characteristics and morphogenesis correspond to the characteristics of the initial tumors are discussed. Main results of previous experimental research providing the possibilities of studying of human gliomas in animal models are highlighted. Modern technologies of human malignant glioma grafts production based on cell culture lines as well as on short-termed cell cultures derived from patients’ biopsy material are analyzed. Technical aspects of orthotopic transplatnation of human malignant gliomas to immunodeficient animals and methods of non-invasive control of their growth are characterized. Problems and perspectives of the research trend are discussed emphasizing possible application of tumor stem cells for the modeling and overcoming the limitations related to the immunodeficiency state of experimental animals.


1. Kaprin A. D., Mardynskij Yu. S. Terapevticheskaya radiologiya. M.: GEOTAR-Media, 2018. (In Russ.).
2. Bernstein M., Berger M. S. Neuro-Oncology: The Essentials. New York: Thieme, 2014. 3. Huszthy P. C., Daphu I., Niclou S. P. Stieber D., Nigro J. M. [et al.]. In vivo models of primary brain tumors: pitfalls and perspectives. Neuro Oncol. 2012;14(8):979-993. https://doi.org/10.1093/neuonc/nos135
4. Pierce A. M., Keating A. K. Creating anatomically accurate and reproducible intracranial xenografts of human brain tumors. J. Vis. Exp. 2014;(91):e52017.
5. Izumchenko E., Paz K., Ciznadija D., Sloma I., Katz A. [et al.]. Patient-derived xenografts effectively capture responses to oncology therapy in a heterogeneous cohort of patients with solid tumors. Ann. Oncol. 2017;0:1-11. https://doi.org/10.1093/annonc/mdx416
6. Wang H., Cai Sh., Bailey B. J., Saadatzadeh M. R., Ding J. [et al.]. Combination therapy in a xenograft model of glioblastoma: enhancement of the antitumor
activity of temozolomide by an MDM2 antagonist. J. Neurosurgery. 2017;126(2):446-459. https://doi.org/10.3171/2016.1.JNS152513
7. Greene H. S. The significance of the heterologous transplantability of human cancer. Cancer. 1952;5(1):24-44. https://doi.org/10.1002/1097-0142(195201)5:13.0.CO;2-O (перекрестная ссылка).
8. Ponten J., Macintyre E. H. Long term culture of normal and neoplastic human glia. Acta Pathol. Microbiol. Scand. 1968;74(4):465-486. https://doi.org/10.1111/j.1699-0463.1968.tb03502.x
9. Festing M. F., May D., Connors T. A., Lovell D., Sparrow S. An athymic nude mutation in the rat. Nature (London). 1978;274:365-366. https://doi.org/10.1038/274365a0
10. Engebraaten O., Hjortland G. O., Hirschberg H., Fodstad O. Growth of precultured human glioma specimens in nude rat brain. J. Neurosurg. 1999;90(1):125-132. https://doi.org/10.3171/jns.1999.90.1.0125
11. Kerbel R. S. Human tumor xenografts as predictive preclinical models for anticancer drug activity in humans: better than commonly perceived-but they can be improved. Cancer Biol. Ther. 2003;2(4 suppl 1):134-139. Available at: https://www.ncbi.nlm.nih.gov/pubmed/14508091 . Accessed November 23, 2018.
12. Pan Yu., Xiong M., Chen R. Ma Yu, Corman C., Maricos M. [et al.]. Athymic mice reveal a requirement for T-cell–microglia interactions in establishing a microenvironment supportive of Nf1 low-grade glioma growth. Genes & Development. 2018;32:491-496. https://doi.org/10.1101/gad.310797.117
13. Hua Ch., Jun D., Qiang H. Xenograft Model of Human Brain Tumor – Current and Emerging Therapeutic Strategies, Ana L. Abujamra, Intech Open. 2011. Available at: https://www.intechopen.com/books/brain-tumors-current-andemerging-therapeutic-strategies/xenograft-model-ofhuman-brain-tumor . Accessed December 12, 2018. https://doi.org/10.5772/21395
14. Buck J. R., McKinley E. T., Fu A., Abel T. W., Thompson R. C. [et al.]. Preclinical TSPO ligand PET to visualize human glioma xenotransplants: A preliminary study. PloS One. 2015;10(10):e0141659. https://doi.org/10.1371/journal.pone.0141659doi:10.1371/journal.pone.0141659
15. Isal S., Pierson J., Imbert, L., Clement A., Charlotte Collet Ch. [et al.]. PET imaging of (68)ga-NODAGA-RGD, as compared with (18)F-fluorodeoxyglucose, in experimental rodent models of engrafted glioblastoma. EJNMMI Research. 2018;8(1):51. https://doi.org/10.1186/s13550-018-0405-5
16. Westphal M., Meissner H. Establishing human gliomaderived cell lines. Methods Cell. Biol. 1998;57:147-165, https://doi.org/10.1016/S0091-679X(08)61576-9
17. Clark M. J., Homer N., O’Connor B. D., Chen Z., Eskin A. [et al.]. Correction: U87MG Decoded: The Genomic Sequence of a Cytogenetically Aberrant Human Cancer Cell Line. PLoS Genet. 2018;14(5):e1007392. https://doi.org/10.1371/journal.pgen.1007392
18. Baklaushev V. P., Kavsan V. M., Balynska O. V., Balynska O. V., Yusubalieva G. M. [et al.]. New Experimental Model of Brain Tumors in Brains of Adult Immunocompetent Rats. British Journal of Medicine & Medical Research. 2012;(2):206-215. https://doi.org/10.5281/zenodo.7815
19. Bjerkvig R., Tonnesen A., Laerum O. D., Backlund E. O. Multicellular tumor spheroids from human gliomas maintained in organ culture. J. Neurosurg. 1990;72(3):463-475. https://doi.org/10.3171/jns.1990.72.3.0463
20. Wang J., Miletic H., Sakariassen P. O., Huszthy P. C., Jacobsen H. [et al.]. A reproducible brain tumour model established from human glioblastoma biopsies. BMC Cancer. 2009;9:465. https://doi.org/10.1186/1471-2407-9-465
21. Sakariassen P. O., Prestegarden L., Wang J., Skaftnesmo K. O., Mahesparan R. [et al.]. Angiogenesisindependent tumor growth mediated by stem-like cancer cells. Proc. Natl. Acad. Sci USA. 2006;103(44):16466-16471. https://doi.org/10.1073/pnas.0607668103
22. Miyai M., Tomita H., Soeda A., Yano H., Iwama T., Hara A. Current trends in mouse models of glioblastoma. J. Neurooncol. 2017;135(3):423-432. https://doi.org/10.1007/s11060-017-2626-2
23. Carlson B. L., Pokorny J. L., Schroeder M. A., Sarkaria J. N. Establishment, maintenance and in vitro and in vivo applications of primary human glioblastoma multiforme (GBM) xenograft models for translational biology studies and drug discovery. Current protocols in pharmacology. editorial board, S. J. Enna (editor-in-chief). Chapter 14. Unit 14.16. 2012. https://doi.org/10.1002/0471141755.ph1416s52
24. Ozawa T., James C. D. Establishing intracranial brain tumor xenografts with subsequent analysis of tumor growth and response to therapy using bioluminescence imaging. Journal of Visualized Experiments. 2010;(41):e1986. https://doi.org/10.3791/1986
25. Singh S. K., Hawkins C., Clarke I. D., Squire J. A., Bayani J. [et al.]. Identification of human brain tumour initiating cells. Nature. 2004;432(7015):396-401. https://doi.org/10.1038/nature03128
26. Garcia C., Dubois L. G., Xavier A. L., Geraldo L. H., da Fonseca A. C. [et al.]. The orthotopic xenotransplant of human glioblastoma successfully recapitulates glioblastoma-microenvironment interactions in a nonimmunosuppressed mouse model. BMC Cancer. 2014;14:923, https://doi.org/10.1186/1471-2407-14-923
27. Giannini C., Sarkaria J. N., Saito A., Uhm, J. H., Galanis E. [et al.]. Patient tumor EGFR and PDGFRA gene amplifications retained in an invasive intracranial xenograft model of glioblastoma multiforme. Neuro Oncol. 2005;7(2):164-176. https://doi.org/10.1215/S1152851704000821
28. Zavjalov E. L., Razumov I. A., Gerlinskaya L. A., Romashchenko A. V. In vivo MRI visualization of growth and morphology in the orthotopic xenotrasplantation U87 glioblastoma mouse SCID model. Vavilovskii Zhurnal Genetiki i Selektsii. – Vavilov Journal of Genetics and Breeding. 2015;19(4):460-465. (In Russ.). https://doi.org/10.18699/J15.061
29. Wathen C. A., Foje N., van Avermaete T., Miramontes B., Chapaman S. E. [et al.]. In vivo X-Ray Computed Tomographic Imaging of Soft Tissue with Native, Intravenous, or Oral Contrast. Sensors. 2013;13(6):6957-6980. https://doi.org/10.3390/s130606957
30. Kirschner S., Felix M. C., Hartmann L., Bierbaum M., Maros M. E. [et al.]. In vivo micro-CT imaging of untreated and irradiated orthotopic glioblastoma xenografts in mice: capabilities, limitations and a comparison with bioluminescence imaging. J. Neurooncol. 2015;122(2):245-254. https://doi.org/10.1007/s11060-014-1708-7
31. Kirschner S., Mürle B., Felix M., Arns A., Christoph Groden C. [et al.]. Imaging of Orthotopic Glioblastoma Xenografts in Mice Using a Clinical CT Scanner: Comparison with Micro-CT and Histology. PLoS One. 2016;11(11):e0165994. https://doi.org/10.1371/journal.pone.0165994
32. Clark A. J., Fakurnejad S., Ma Q., Hashizume R. Bioluminescence Imaging of an Immunocompetent Animal Model for Glioblastoma. J. Vis. Exp. 2016;107:e53287. https://doi:10.3791/53287
33. Houchens D. P., Ovejera D. P., Riblet S. M., Slagel D. E. Human brain tumor xenografts in nude mice as a chemotherapy model. Eur. J. Cancer Clin. Oncol. 1983;19(6):799-805. https://doi.org/10.1016/0277-5379(83)90012-3
34. Available at: https://rosoncoweb.ru/standarts/RUSSCO/2014/06. pdf/. Accessed December 21, 2018. (In Russ.).
35. Available at: https://rosoncoweb.ru/standarts/RUSSCO/2018/2018-06 .pdf. Accessed December 21, 2018. (In Russ.).
36. Solimando D. A., Waddell J. A. Procarbazine, Lomustine, and Vincristine (PCV) Regimen for Central Nervous System Tumors. Hosp. Pharm. 2017;52(2):98-104. https://doi.org/10.1310/hpj5202-98
37. Pytliak M., Vargova V., Mechírová V. Matrix Metalloproteinases and Their Role in Oncogenesis: A Review. Onkologie. 2012;35(1-2):49-53. https://doi.org/10.1159/000336304
38. Zhao Yu., Xiao A., di Pierro C. G., Carpenter J. E., AbdelFattah R. [et al.]. An Extensive Invasive Intracranial Human Glioblastoma Xenograft Model. The American Journal of Pathology. 2010;176(6):3032-3049. https://doi.org/10.2353/ajpath.2010.090571
39. Ulasov I. V., Kaverina N. V., Kadagidze Z. G., Baryshnikov A. Y. Inhibition of mt1-mmp (mmp14) improves ant-glioma effect of combination: temozolomide-ionizing radiation in the glioblastoma cancer cellsinhibition of mt1-mmp (mmp14) improves ant-glioma effect of combination: temozolomide-ionizing radiation in the glioblastoma cancer cells. Rossysky bioterapevtichesky zhurnal. – Russian Journal of Biotherapy. 2015;14(2):53-58. (In Russ.). https://doi.org/10.17650/1726-9784-2015-14-2-53-58
40. O’Duibhir E., Carragher N. O., Pollard S. M. Accelerating glioblastoma drug discovery: Convergence of patientderived models, genome editing and phenotypic screening. Mol. Cell. Neurosci. 2016;80:198-207. https://doi.org/10.1016/j.mcn.2016.11.001
41. Lathia J., Mack S., Mulkearns-Hubert E., Valentim C. L. L., Rich J. N. Cancer stem cells in glioblastoma. Genes Dev. 2015;29(12):1203-1217. https://doi.org/10.1101/gad.261982.115
42. Brennan C. W., Verhaak R. G. W., McKenna A., Campos B., Noushmehr H. [et al.]. The somatic genomic landscape of glioblastoma. Cell. 2013;155:462-477. https://doi.org/10.1016/j.cell.2013.09.034
43. Sturm D., Witt H., Hovestadt V., Khuong-Quang D. A., Jones D. T. [et al.]. Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell. 2012;22:425-437. https://doi.org/10.1016/j.ccr.2012.08.024
44. Ran F. N., Hsu P. D., Wright J., Agarwala V., Scott D. A., Zhang F. Genome engineering using the CRISPRCas9 system. Nature Protocol. 2013;8:2281-2308. https://doi.org/10.1038/nprot.2013.143
45. Rispoli R., Conti C., Celli P., Caroli E., Carletti S. Neural Stem Cells and Glioblastoma. Neuroradiol. J. 2014;27(2): 169-174. https://doi.org/10.15274/NRJ-2014-10028
46. Kirichenko E. Yu., Zhukova G. V., Grigorov S. V., Grankina A. O., Atmachidi D. P. The expression of connexin 36 and some neuroglial antigens in human brain astrocytic tumors of different grades. Arkhiv patologii. – Archive of Pathology. 2015;77(3):23-29. (In Russ.). https://doi.org/10.17116/patol201577323-29
47. Grek C. L., Sheng Z., Naus C. C., Sin W. C., Gourdie R. G., Ghatnekar G. G. Novel approach to temozolomide resistance in malignant glioma: connexin43-directed therapeutics. Curr. Opin. Pharmacol. 2018;41:79-88. https://doi.org/10.1016/j.coph.2018.05.002
48. Ben-David U., Gavin Ha G., Tseng Y., Greenwald N. F., Oh C. [et al.]. Patient-derived xenografts undergo mousespecific tumor evolution. Nature Genetics. 2017;49(11). https://doi.org/10.1038/ng.3967
49. Yashin К. S., Medyanik I. А. Brain Cancer Immunotherapy (Review). Sovremennye tehnologii v medicine. – Modern technology in medicine. 2014;6(4):189-200. Available at: https://readera.ru/immunoterapija-zlokachestvennyhopuholej-golovnogo-mozga-obzor-14316850 . Accessed December 15, 2018. (In Russ.).
50. Lim M., Xia Y., Bettegowda C., Weller M. Current state of immunotherapy for glioblastoma. Nat. Rev. Clin. Oncol. 2018;15(7):422-442. https://doi.org/10.1038/s41571-018-0003-5
51. Lee J., Dang X., Borboa A., Coimbra R., Baird A., Eliceiriet B. P. Thrombin-processed Ecrg4 recruits myeloid cells and induces antitumorigenic inflammation. NeuroOncology. 2015;17(5):685-696. https://doi.org/10.1093/neuonc/nou302
52. Sepiashvili R. I., Malashkhia Yu. A. Brain as one of the main organs of the immune system. Allergologiya i immunologiya. – Allergology and Immunology. 2015;16(1):8-13. Available at: https://elibrary.ru/download/elibrary_23561280_30669076 .pdf. Accessed December 18, 2018. (In Russ.).
53. Hambardzumyan D., Gutmann D. H., Kettenmann H. The role of microglia and macrophages in glioma maintenance and progression. Nature neuroscience. 2016;19(1):20-27. https://doi.org/10.1038/nn.4185
54. Wei J., Gabrusiewicz K., Heimberger A. The Controversial Role of Microglia in Malignant Gliomas. Clinical and Developmental Immunology. 2013:1-12. https://doi.org/10.1155/2013/285246
55. De La Rochere P., Guil-Luna S., Decaudin D., Azar G., Sidhu S. S., Piaggio E. Humanized Mice for the Study of Immuno-Oncology. Trends in Immunology. 2018;39(9):748-763. https://doi.org/10.1016/j.it.2018.07.001
56. Basel M. T., Narayanan S., Ganta C., Marquez A., Pyle M. Developing a Xenograft Human Tumor Model in Immunocompetent Mice. Cancer Letters. 2018;412(1):256- 263. https://doi.org/10.1016/j.canlet.2017.10.009

Keywords: human malignant gliomas, orthotopic xenotransplatnation, grafts, tumor stem cells, immunodeficient animals

Stavropol State Medical Academy
Pyatigorsk State Research Institute of Balneotherapeutics
Pyatigorsk State Pharmaceutical Academy