logo
Медицинский вестник
Северного Кавказа
Научно-практический журнал
Зарегистрирован в Федеральной службе
по надзору за соблюдением законодательства
в сфере массовых коммуникаций
и охране культурного наследия
ПИ №ФС77-26521 от 7 декабря 2006 года
ISSN 2073-8137
rus
русский
eng
english

Поиск по сайту




Адрес редакции
355017, Ставрополь, улица Мира, 310.

Телефоны
(8652) 35-25-11, 35-32-29.

E-mail
medvestnik@stgmu.ru

Рейтинг@Mail.ru

Роль эпигенетических модификаций в патогенезе артериальной гипертензии: в фокусе метилирование ДНК

[Обзоры]
Айтбаев Кубаныч Авенович; Муркамилов Илхом Торобекович; Фомин Виктор Викторович; Юсупов Фуркат Абдулахатович;

Артериальная гипертензия (далее – гипертензия) представляет собой сложное заболевание, возникающее в результате взаимодействия генетических, эпигенетических и окружающих факторов. Исследования указывают, что генетические факторы вносят вклад в вариации гипертензии примерно на 30–50 %, в то время как эпигенетические метки или модификации также играют важную роль, влияя на экспрессию генов и способствуя развитию гипертензии. В данном обзоре особое внимание уделено роли метилирования ДНК – одного из наиболее стабильных эпигенетических механизмов – в развитии артериальной гипертензии. Мы рассматриваем также потенциал использования метилирования ДНК в качестве объективного маркера для идентификации гипертензии, который не подвержен влиянию краткосрочных факторов, таких как стресс или недавняя физическая активность.

Скачать

Список литературы:
1. Mills K. T., Bundy J. D., Kelly T. N., Reed J. E., Kearney P. M. [et al.]. Global disparities of hypertension prevalence and control: a systematic analysis of population-based studies from 90 countries. Circulation. 2016;134(6):441-450. https://doi.org/10.1161/CIRCULATIONAHA.115.018912
2. Zhou B., Carrillo-Larco R. M., Danaei G., Riley L. M., Paciorek C. J. [et al.]. Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: a pooled analysis of 1201 populationrepresentative studies with 104 million participants. The Lancet. 2021;398(10304):957-980. https://doi.org/10.1016/S0140-6736(21)01330-1
3. Karabaeva R. Z., Vochshenkova T. A., Mussin N. M. Epigenetics of hypertension as a risk factor for the development of coronary artery disease in type 2 diabetes mellitus. Front. Endocrinol. (Lousanne). 2024;15:1365738. https://doi.org/10.3389/fendo.2024.1365738
4. Olczak K. J., Taylor-Bateman V., Nicholls H. L., Traylor M., Cabrera C. P., Munroe P. B. Hypertension genetics past, present and future applications. J. Intern. Med. 2021;290(6):1130-1152. https://doi.org/10.1111/JOIM.13352
5. Ahn S. Y., Gupta C. Genetic programming of hypertension. Frontiers in Pediatrics. 2017;5:285. https://doi.org/10.3389/FPED.2017.00285
6. Liang M. Epigenetic mechanisms and hypertension. Hypertension. 2018;72(6):1244-1254. https://doi.org/10.1161/HYPERTENSIONAHA.118.11171
7. Wise I. A., Charchar F. J. Epigenetic modifications in essential hypertension. International Journal of Molecular Sciences. 2016;17(4):451. https://doi.org/10.3390/IJMS17040451
8. Carey R. M., Muntner P., Bosworth H. B., Whelton P. K. Prevention and control of hypertension: JACC health promotion series. J. Amer. Coll. Cardiol. 2018;72(11):1278-1293. https://doi.org/10.1016/J.JACC.2018.07.008
9. Каплун Д. С., Калюжный Д. М., Прохорчук Е. Б., Женило С. В. Метилирование ДНК: распределение в геноме, механизм регуляции и мишень для терапии. Аcta Naturae. 2022;14(4):4-19. https://doi.org/10.32607/actanaturae.11822
10. Ehrlich M. DNA hypermethylation in disease: mechanisms and clinical relevance. Epigenetics. 2019;14(12):1141-1163. https://doi.org/10.1080/15592294.2019.1638701
11. Forrester S. J., Booz G. W., Sigmund C. D., Coffman T. M., Kawai T. [et al.]. Angiotensin II signal transduction: an update on mechanisms of physiology and pathophysiology. Physiol. Rev. 2018;98:1627-1738. https://doi.org/10.1152/physrev.00038.2017
12. Han L., Liu Y., Duan S., Li W., He Y. DNA methylation and hypertension: emerging evidence and challenges. Brief. Funct. Genom. 2016;15(6):460-469. https://doi.org/10.1093/BFGP/ELW014
13. Pratamawati T. M., Alwi I., Asmarinah. Summary of known genetic and epigenetic modification contributed to hypertension. Int. J. Hypertens. 2023;2023:5872362. https://doi.org/10.1155/2023/5872362
14. Wang T., Lian G., Cai X., Lin Z., Xie L. Effect of prehypertensive losartan therapy on AT1R and ATRAP methylation of adipose tissue in the later life of high-fatfed spontaneously hypertensive rats. Molec. Med. Rep. 2018;17(1):1753-1761. https://doi.org/10.3892/MMR.2017.8081
15. Nosalski R., Lemoni M. The epigenetic legacy of reninangiotensin system inhibition in preventing hypertension. Cardiovasc. Res. 2024;120(7):675-677. https://doi.org/10.1093/cvr/cvae076
16. Kuula J., Czamara D., Hauta-alus H., Lahti J., Hovi P. [et al.]. Epigenetic signature of very low birth weight in young adult life. Pediatr. Res. 2024. https://doi.org/10.1038/s41390-024-03354-6
17. Wang C., Chen R., Cai J., Shi J., Yang C. [et al.]. Personal exposure to fine particulate matter and blood pressure: a role of angiotensin converting enzyme and its DNA methylation. Environment Intern. 2016;94:661-666. https://doi.org/10.1016/J.ENVINT.2016.07.001
18. Holmes L., Lim A., Comeaux C. R., Dabney K. W., Okundaye O. DNA methylation of candidate genes (ACE II, IFN-γ, agtr 1, ckg, ADD1, SCNN1B and TLR2) in essential hypertension: a systematic review and quantitative evidence synthesis. Intern. J. Environment. Res. Public Health. 2019;16(23):4829. https://doi.org/10.3390/IJERPH16234829
19. Sameer A. S., Nissar S. Toll-like receptors (TLRs): structure, functions, signaling, and role of their polymorphisms in colorectal cancer susceptibility. BioMed. Res. Intern. 2021;2021:14. https://doi.org/10.1155/2021/1157023.1157023
20. Uciechowski P., Dempke W. C. M. Interleukin-6: a masterplayer in the cytokine network. Oncology. 2020;98(3):131-137. https://doi.org/10.1159/000505099
21. Mao S., Gu T., Zhong F., Fan R., Zhu F. [et al.]. Hypomethylation of the Toll-like receptor-2 gene increases the risk of essential hypertension. Molec. Med. Rep. 2017a;16(1):964-970. https://doi.org/10.3892/MMR.2017.6653
22. Prunicki M., Cauwenberghs N., Lee J., Zhou X., Movassagh H. [et al.]. Air pollution exposure is linked with methylation of immunoregulatory genes, altered immune cell profiles, and increased blood pressure in children. Sci. Rep. 2021;18:11(1):4067. https://doi.org/10.1038/s41598-021-83577-3
23. Mao S. Q., Sun J. H., Gu T. L., Zhu F. B., Yin F. Y. [et al.]. Hypomethylation of interleukin-6 (IL-6) gene increases the risk of essential hypertension: a matched case-control study. J. Human Hypertens. 2017;31(8):530-536. https://doi.org/10.1038/JHH.2017.7
24. Sun H. J., Hou B., Wang X., Zhu X. X., Li K. X. [et al.]. Endothelial dysfunction and cardiometabolic diseases: Role of long non-coding RNAs. Life Sci. 2016;15:167:6-11. https://doi.org/10.1016/j.lfs.2016.11.005
25. Zhong S., Li L., Shen X., Li Q., Xu W. [et al.]. An update on lipid oxidation and inflammation in cardiovascular diseases. Free Radic. Biol. Med. 2019;20:144:266-278. https://doi.org/10.1016/j.freeradbiomed.2019.03.036
26. Gallo G., Volpe M., Savoia C. Endothelial dysfunction in hypertension: current concepts and clinical implications. Front. Med. 2022;8:3022. https://doi.org/10.3389/FMED.2021.798958
27. Leatham-Jensen M., Uyehara C. M., Strahl B. D., Matera A. G., Duronio R. J. [et al.]. Lysine 27 of replicationindependent histone H3.3 is required for Polycomb target gene silencing but not for gene activation. PLOS Genetics. 2019;15(1):e1007932. https://doi.org/10.1371/journal.pgen.1007932
28. Alfonso Perez G., Delgado Martinez V. Epigenetic Signatures in Hypertension. J. Pers. Med. 2023;13:787. https://doi.org/10.3390/jpm13050787
29. Dasinger J. H., Alsheikh A. J., Abais-Battad J. M., Pan X., Fehrenbach D. J. [et al.]. Epigenetic modifications in T cells: The role of DNA methylation in salt-sensitive hypertension. Hypertension. 2020;75:372-382.
30. Arkhipov S. N., Liao T. D., Potter D. L., Bobbitt K. R., Ivanov V. [et al.]. Dissociation of Hypertension and Renal Damage After Cessation of High-Salt Diet in Dahl Rats. Hypertension. 2024;81(6):1345-1355. https://doi.org/10.1161/HYPERTENSIONAHA
31. Huang D., Shang W., Xu M., Wan Q., Zhang J. [et al.]. Genome-Wide Methylation Analysis Reveals a KCNK3-Prominent Causal Cascade on Hypertension. Circ Res. 2024;135(3):e76-e93. https://doi.org/10.1161/CIRCRESAHA
32. Demura M., Saijoh K. The role of DNA methylation in hypertension. In Hypertension: From Basic Research to Clinical Practice; Springer: Cham, Switzerland. 2017;583-598.
33. Agrawal P., Kaur J., Singh J., Rasane P., Sharma K. [et al.]. Genetics, Nutrition, and Health: A New Frontier in Disease Prevention. J. Am. Nutr. Assoc. 2024;43(4):326-338. https://doi.org/10.1080/27697061.2023.2284997
34. Liu G., Bin P., Wang T., Ren W., Zhong J. [et al.]. DNA Methylation and the Potential Role of Methyl-Containing Nutrients in Cardiovascular Diseases. Oxid. Med. Cell. Longev. 2017;2017:1670815. https://doi.org/10.1155/2017/1670815
35. Shim H. S., Iaconelli J., Shang X., Li J., Lan Z. D. [et al.]. TERT activation targets DNA methylation and multiple aging hallmarks. Cell. 2024;187(15):4030-4042.e13. https://doi.org/10.1016/j.cell.2024.05.048
36. Domingo-Relloso A., Makhani K., Riffo-Campos A. L., Tellez-Plaza M., Klein K. O. [et al.]. Arsenic Exposure, Blood DNA Methylation, and Cardiovascular Disease. Circ. Res. 2022;131(2):e51-e69. https://doi.org/10.1161/CIRCRESAHA.122.320991
37. Sun Y., Peng Z., Liang H. Role of physical activity in cardiovascular disease prevention: impact of epigenetic modifications. Front. Cardiovasc. Med. 2025;12:1511222. https://doi.org/10.3389/fcvm.2025.1511222

Ключевые слова: эпигенетика, артериальная гипертензия, эпигенетические модификации, метилирование ДНК, эпигенетические маркеры


Учредители:
Ставропольская государственная медицинская академия
Государственный научно-исследовательский институт курортологии
Пятигорская государственная фармацевтическая академия