Поиск по сайту
Адрес редакции
355017, Ставрополь, улица Мира, 310.
Телефоны
(8652) 35-25-11, 35-32-29.
E-mail
medvestnik@stgmu.ru
Журнал включён в Перечень ведущих рецензируемых научных журналов и изданий, в которых должны быть опубликованы результаты диссертаций на соискание учёной степени кандидата и доктора наук (решение Президиума ВАК Минобрнауки РФ №6/6, февраль 2010).
Журнал включён в Реферативный журнал и Базы данных ВИНИТИ РАН и зарегистрирован в Научной электронной библиотеке в базе данных Российского индекса научного цитирования на основании сублицензионного договора № 07-04/09-14 от 25 марта 2009 года.
Журнал индексируется: БД SCOPUS, Ulrich's International Periodicals Directory.
[Обзоры]
Долбня Светлана Викторовна; Понамарева Виктория Романовна; Захарова Ирина Николаевна; Климов Леонид Яковлевич; Толкунова Анна Александровна; Зарытовская Наталья Владимировна; Луговский Владислав Денисович; Пентегова Дарья Алексеевна;
Обзор посвящен особенностям костного метаболизма у детей с хроническими заболеваниями органов дыхания, а именно муковисцидозом и бронхиальной астмой. Согласно результатам многочисленных исследований, пациенты с хроническими заболеваниями бронхов и лёгких подвержены преждевременному развитию дисбаланса костного ремоделирования, что клинически проявляется в форме остеопении, остеопороза и низкоэнергетических переломов. Обсуждаются факторы, оказывающие влияние на состояние костного обмена на физиологическом уровне, а также роль различных патогенетических механизмов и лекарственной терапии в снижении минеральной плотности кости у пациентов детского возраста с муковисцидозом и бронхиальной астмой.
Список литературы:
1. Owen R., Reilly G. C. In vitro models of bone remodelling and associated disorders. Front Bioeng Biotechnol. 2018;6:134. https://doi.org/10.3389/fbioe.2018.00134
2. Zakharova I. N., Tvorogova T. M., Vasileva S. V. [et al.] Osteotropic micronutrients and their effect on bone remodeling in adolescents. Pediatriya. Consilium Medicum. 2020;2:72-79. https://doi.org/10.26442/26586630.2020.2.200240
3. Ma Y., Qiu S., Zhou R. Osteoporosis in patients with respiratory diseases. Front Physiol. 2022;13:939253. https://doi.org/10.3389/fphys.2022.939253
4. Chevalley T., Rizzoli R. Acquisition of peak bone mass. Best Pract. Res. Clin. Endocrinol. Metab. 2022;36(2):101616. https://doi.org/10.1016/j.beem.2022.101616
5. Cao B., Liu M., Luo Q., Wang Q., Liu M. [et al.] The effect of BMI, age, gender, and pubertal stage on bone turnover markers in chinese children and adolescents. Front Endocrinol. (Lausanne). 2022;13:880418. https://doi.org/10.3389/fendo.2022.880418
6. Ambroszkiewicz J., Gajewska J., Rowicka G., Klemarczyk W., Chelchowska M. Assessment of biochemical bone turnover markers and bone mineral density in thin and normal-weight children. Cartilage. 2018;9(3):255-262. https://doi.org/10.1177/1947603516686145
7. Leeuwen J., Koes B. W., Paulis W. D., Middelkoop M. Differences in bone mineral density between nor mal-weight children and children with overweight and obesity: a systematic review and meta-analysis. Obes. Rev.2017;18(5):526-546. https://doi.org/10.1111/obr.12515
8. Zhang Y. W., Song P. R., Wang S. C., Liu H., Shi Z. M. [et al.] Diets intervene osteoporosis via gut-bone axis. Gut Microbes. 2024;16(1):2295432. https://doi.org/10.1080/19490976.2023.2295432
9. Florencio-Silva R., Sasso G. R., Sasso-Cerri E., Simoes M. J., Cerri P. S. Biology of bone tissue: structure, func tion, and factors that influence bone cells. Biomed. Res. Int. 2015;2015:421746. https://doi.org/10.1155/2015/421746
10. Liang B., Burley G., Lin S., Shi Y. C. Osteoporosis pathogenesis and treatment: existing and emerging avenues. Cell Mol. Biol. Lett. 2022;27(1):72. https://doi.org/10.1186/s11658-022-00371-3
11. Schini M., Vilaca T., Gossiel F., Salam S., Eastell R. Bone turnover markers: basic biology to clinical applications. Endocr. Rev. 2023;44(3):417-473. https://doi.org/10.1210/endrev/bnac031
12. Fleet J. C. Vitamin D-mediated regulation of intestinal calcium absorption. Nutrients. 2022;14(16):3351. https://doi.org/10.3390/nu14163351
13. Khundmiri S. J., Murray R. D., Lederer E. PTH and Vitamin D. Compr. Physiol. 2016;6(2):561-601. https://doi.org/10.1002/cphy.c140071
14. Young K., Beggs M. R., Grimbly C., Alexander R. T. Regulation of 1 and 24 hydroxylation of vitamin D metabo lites in the proximal tubule. Exp. Biol. Med. (Maywood). 2022;247(13):1103-1111. https://doi.org/10.1177/15353702221091982
15. Baranova I. A., Kondrat’eva E. I., Krasovskiy A. A. Osteoporosis in cystic fibrosis: terminology, diagnosis and clinical signs. Pulmonologiya. 2017;27(2):291-297. https://doi.org/10.18093/0869-0189-2017-27-2-291-297
16. Komori T. Functions of osteocalcin in bone, pancreas, testis, and muscle. Int. J. Mol. Sci. 2020;21(20):7513. https://doi.org/10.3390/ijms21207513
17. Szulc P., Naylor K., Hoyle N. R., Eastell R., Leary E. T. Use of CTX-I and PINP as bone turnover markers: National Bone Health Alliance recommendations to standardize sample handling and patient preparation to reduce pre-analytical variability. Osteoporos Int. 2017;28:2541-2556. https://doi.org/10.1007/s00198-017-4082-4
18. Brown J. P., Don-Wauchope A., Douville P., Albert C., Vasikaran S. D. Current use of bone turnover markers in the management of osteoporosis. Clin. Biochem. 2022;109-110:1-10. https://doi.org/10.1016/j.clinbiochem.2022.09.002
19. Zhekaite E. K., Maksimycheva T. Yu. Decrease in bone mineral density in children with cystic fibrosis: dynamics over 15 years. Archives of Pediatrics and Pediatric Surgery. 2023;1(1):31-40. https://doi.org/10.31146/2949-4664-apps-1-1-31-40
20. Josefa M. V., Carmen D. P., Isabel D. P., Esther Q. G., Jose L. L. C. Evaluation of bone metabolism in children with cystic fibrosis. Bone. 2021;147:115929. https://doi.org/10.1016/j.bone.2021.115929
21. Sheikh S., Gemma S., Patel A. Factors associated with low bone mineral density in patients with cystic fibrosis. J. Bone Miner. Metab. 2015;33(2):180-185. https://doi.org/10.1007/s00774-014-0572-z
22. Jacquot J., Delion M., Gangloff S., Braux J., Velard F. Bone disease in cystic fibrosis: new pathogenic insights opening novel therapies. Osteoporos Int. 2016;27(4):1401-1412. https://doi.org/10.1007/s00198-015-3343-3
23. Terashima A., Takayanagi H. The role of bone cells in immune regulation during the course of infection. Semin. Immunopathol. 2019;41(5):619-626. https://doi.org/10.1007/s00281-019-00755-2
24. Fonseca O., Gomes M. S., Amorim M. A., Gomes A. C. Cystic fibrosis bone disease: The interplay between CFTR dysfunction and chronic inflammation. Biomolecules. 2023;13(3):425. https://doi.org/10.3390/biom13030425
25. Buyuksahin N. H., Dogru D., Gozmen O., Ozon A., Portakal O. [et al.] Cystic fibrosis related bone disease in children: Can it be predicted? Clin. Nutr. 2023;42(9):1631-1636. https://doi.org/10.1016/j.clnu.2023.07.015
26. Frey D. L., Boutin S., Dittrich S. A., Graeber S. Y., Stahl M. [et al.] Relationship between airway dysbiosis, inflammation and lung function in adults with cystic fibrosis. J. Cyst. Fibros. 2021;20(5):754-760. https://doi.org/10.1016/j.jcf.2020.12.022
27. Henaff L. C., Mansouri R., Modrowski D., Zarka M., Geoffroy V. [et al.] Increased NF-κB activity and decreased Wnt/β-Catenin signaling mediate reduced osteoblast differentiation and function in ΔF508 cystic fibrosis transmembrane conductance regulator (CFTR) mice. J. Biol. Chem. 2015;290(29):18009-18017. https://doi.org/10.1074/jbc.M115.646208
28. Dolbnya S. V., Dyatlova A. A., Kuryaninova V. A., Klimov L. Ya., Kondratyeva E. I. [et al.] Seasonal dynamics of the level of calcidiol in children with cystic fibrosis living in the South of Russia. Medical News of North Caucasus. 2022;17(2):143-148. https://doi.org/10.14300/mnnc.2022.17035
29. Farahbakhsh N., Fatahi S., Shirvani A., Motaharifard M. S., Mohkam M. [et al.] Vitamin D deficiency in patients with cystic fibrosis: a systematic review and meta-analysis. J. Health Popul. Nutr. 2024;43(1):11. https://doi.org/10.1186/s41043-024-00499-2
30. Zhekaite Е. K., Klimov L. Ya., Dolbnya S. V., Kondratyeva E. I., Ilyenkova N. A. [et al.] Activity of the antimicrobial peptide in children with cystic fibrosis. Medical News of North Caucasus. 2020;15(2):195-200. https://doi.org/10.14300/mnnc.2020.15047
31. Ilyenkova N. A., Klimov L. Ya., Zhekaite E. K., Chikunov V. V., Melyanovskaya Yu. L. [et al.] Vitamin D provision among children with cystic fibrosis in the Russian Federation during winter time. Siberian Medical Review. 2019;(2):29-36. https://doi.org/10.20333/2500136-2019-2-29-36
32. Dolbnya S. V., Dyatlova A. A., Klimov L. Ya., Kondratyeva E. I., Kuryaninova V. A. [et al.] Features of vitamin D provision of children with cystic fibrosis residing in the South of Russia in summer. Medical News of North Caucasus. 2020;15(2):215-219. https://doi.org/10.14300/mnnc.2020.15051
33. Juhasz M. F., Varannai O., Németh D., Szakacs Z., Kiss S. [et al.] Vitamin D supplementation in patients with cystic fibrosis: A systematic review and meta-analysis. J. Cyst. Fibros. 2021;20(5):729-736. https://doi.org/10.1016/j.jcf.2020.12.008
34. Daley T., Hughan K., Rayas M., Kelly A., Tangpricha V. Vitamin D deficiency and its treatment in cystic fibrosis. J. Cyst. Fibros. 2019;18(2):66-73. https://doi.org/10.1016/j.jcf.2019.08.022
35. Wu M., Bhimavarapu A., Alvarez J. A., Hunt W. R., Tangpricha V. Changes in bone turnover after highdose vitamin D supplementation during acute pulmonary exacerbation in cystic fibrosis. Bone. 2023;174:116835. https://doi.org/10.1016/j.bone.2023.116835
36. Loshkova E. V., Kondratyeva E. I., Zhekaite E. K., Klimov L. Ya., Ilyenkova N. A. [et al.] Associations of the VDR gene with clinical manifestations and complications of cystic fibrosis. Pulmonologiya. 2023;33(4):443-453. https://doi.org/10.18093/0869-0189-2023-33-4-443-453
37. Sharma S., Jaksic M., Fenwick S., Byrnes C., Cundy T. Accrual of bone mass in children and adolescents with cystic fibrosis. J. Clin. Endocrinol. Metab. 2017;102(5):1734-1739. https://doi.org/10.1210/jc.2016-3459
38. Lavi E., Gileles-Hillel A., Zangen D. Somatic growth in cystic fibrosis. Curr. Opin. Endocrinol. Diabetes Obes.2020;27(1):38-46. https://doi.org/10.1097/MED.0000000000000522
39. Wong S. C., Dobie R., Altowati M. A., Werther G. A., Farquharson C. [et al.] Growth and the Growth HormoneInsulin Like Growth Factor 1 Axis in children with chronic inflammation: current evidence, gaps in knowledge, and future directions. Endocr. Rev. 2016;37(1):62-110. https://doi.org/10.1210/er.2015-1026
40. Wilschanski M., Munck A., Carrion E., Cipolli M., Collins S. [et al.] ESPEN-ESPGHAN-ECFS guideline on nutrition care for cystic fibrosis. Clin. Nutr. 2024;43(2):413-445. https://doi.org/10.1016/j.clnu.2023.12.017
41. Escobedo-Monge M. F., Marcos-Temprano M., ParodiRoman J., Escobedo-Monge M. A., Alonso-Vicente C. [e al.] Calcium, phosphorus, and vitamin D levels in a series of cystic fibrosis patients: a cross-sectional study. Int. J. Mol. Sci. 2024;25(3):1900. https://doi.org/10.3390/ijms25031900
42. Goldsweig B., Kaminski B., Sidhaye A., Blackman S. M., Kelly A. Puberty in cystic fibrosis. J. Cyst. Fibros. 2019;18(2):88-94. https://doi.org/10.1016/j.jcf.2019.08.013
43. Larkova I. A., Scheplyagina L. A., Revyakina V. A., Kuvshinova E. D., Shavkina M. I. [et al.] Mineral bone dencity in children and adolescents with bronchial asthma: risk factors and correction. Pediatria named after G. N. Speransky. 2017;96(2):28-33.
44. Shaheen M. S., Silverberg J. I. Association of asthma with osteopenia, osteoporosis, osteomalacia, and fractures. Allergy Asthma Proc. 2020;41(2):112-119. https://doi.org/10.2500/aap.2020.41.190035
45. Ahmad M., Hachemi Y., Paxian K., Mengele F., Koenen M. [et al.] A jack of all trades: impact of glucocorticoids on cellular cross-talk in osteoimmunology. Front. Immunol. 2019;10:2460. https://doi.org/10.3389/fimmu.2019.02460
46. Sandru F., Carsote M., Dumitrascu M. C., Albu S. E., Valea A. Glucocorticoids and trabecular bone score. J. Med. Life. 2020;13(4):449-453. https://doi.org/10.25122/jml-2019-0131
47. Kumarathas I., Harslof T., Andersen C. U., Langdahl B., Hilberg O. [et al.] The risk of osteoporosis in patients with asthma. Eur. Clin. Respir. J. 2020;7(1):1763612. https://doi.org/10.1080/20018525.2020.1763612
48. Price D., Castro M., Bourdin A., Fucile S., Altman P. Shortcourse systemic corticosteroids in asthma: striking the balance between efficacy and safety. Eur. Respir. Rev. 2020;29:190151. https://doi.org/10.1183/16000617.0151-2019
49. Allen D. B. Inhaled corticosteroids and endocrine effects in childhood. Endocrinol. Metab. Clin. North Am. 2020;49(4):651-665. https://doi.org/10.1016/j.ecl.2020.07.003
50. Chalitsios C. V., Shaw D. E., McKeever T. M. Risk of osteoporosis and fragility fractures in asthma due to oral and inhaled corticosteroids: two population-based nested case-control studies. Thorax. 2021;76(1):21-28. https://doi.org/10.1136/thoraxjnl-2020-215664
51. Gray N., Howard A., Zhu J., Feldman L. Y., To T. Association between inhaled corticosteroid use and bone fracture in children with asthma. JAMA Pediatr. 2018;172(1):57-64. https://doi.org/10.1001/jamapediatrics.2017.3579
52. Patil S. H., Kumar V., Nandan D. Effect of long-term medium to high-dose inhaled budesonide on bone mineral density in children with asthma: a cross-sectional study. J. Asthma. 2023;60(12):2130-2136. https://doi.org/10.1080/02770903.2023.2220815
53. Kunoe A., Sevelsted A., Chawes B. L. K., Stokholm J., Krakauer M. [et al.] Height and bone mineral content after inhaled corticosteroid use in the first 6 years of life. Thorax. 2022;77(8):745-751. https://doi.org/10.1136/thoraxjnl-2020-216755
54. Hui R. W. H. Inhaled corticosteroid-phobia and childhood asthma: Current understanding and management implications. Paediatr. Respir. Rev. 2020;33:62-66. https://doi.org/10.1016/j.prrv.2019.03.009
55. Sirufo M. M., Suppa M., Ginaldi L., De Martinis M. Does allergy break bones? Osteoporosis and its connection to allergy. Int. J. Mol. Sci. 2020;21(3):712. https://doi.org/10.3390/ijms21030712
56. Cutolo M., Gotelli E. The 2023’s growing evidence confirming the relationship between Vitamin D and autoimmune diseases. Nutrients. 2023;15(22):4760. https://doi.org/10.3390/nu15224760
57. Ahmad S., Arora S., Khan S., Mohsin M., Mohan A. [et al.] Vitamin D and its therapeutic relevance in pulmonary diseases. J. Nutr. Biochem. 2021;90:108571. https://doi.org/10.1016/j.jnutbio.2020.108571
58. Kaur N., Kumar V., Singh J., Jain H., Paras P. [et al.] Assessment of the relation between asthma severity and serum vitamin D levels: a cross-sectional study. Cureus. 2023;15(10):e46826. https://doi.org/10.7759/cureus.46826
59. Stefanidis C., Martineau A. R., Nwokoro C., Griffiths C. J., Bush A. Vitamin D for secondary prevention of acute wheeze attacks in preschool and school-age children. Thorax. 2019;74(10):977-985. https://doi.org/10.1136/thoraxjnl-2019-213278
60. Sapartini G., Wong G. W. K., Indrati A. R., Kartasasmita C. B., Setiabudiawan B. The association between vitamin D, interleukin-4, and interleukin-10 levels and CD23+ expression with bronchial asthma in stunted children. Biomedicines. 2023;11(9):2542. https://doi.org/10.3390/biomedicines11092542
Ключевые слова: муковисцидоз, бронхиальная астма, остеопения, остеопороз, костный метаболизм