logo
Медицинский вестник
Северного Кавказа
Научно-практический журнал
Зарегистрирован в Федеральной службе
по надзору за соблюдением законодательства
в сфере массовых коммуникаций
и охране культурного наследия
ПИ №ФС77-26521 от 7 декабря 2006 года
ISSN 2073-8137
rus
русский
eng
english

Поиск по сайту




Адрес редакции
355017, Ставрополь, улица Мира, 310.

Телефоны
(8652) 35-25-11, 35-32-29.

E-mail
medvestnik@stgmu.ru

Рейтинг@Mail.ru

Острый инсульт у пациентов с COVID-19

[Обзоры]
Кабаева Екатерина Николаевна; Тушова Кристина Андреевна; Ноздрюхина Наталия Васильевна; Ершов Антон Валерьевич;

Более двух лет COVID-19 остается на пике актуальных медико-социальных проблем во всех странах. Пополняются данные о разработке новых методов его лечения и профилактики, появляются новые штаммы вируса с увеличением числа возможных осложнений, более тяжелым течением коронавирусной инфекции, ростом заболеваемости и летальных исходов у молодых пациентов. Доказан факт сердечно-сосудистых заболеваний как фактора повышенного риска тяжелого течения болезни. В условиях метаболических расстройств и эндокринопатий COVID-19 является триггером острых сердечно-сосудистых катастроф, выявлена высокая частота развития синдрома полиорганной недостаточности, нередко с фатальным исходом. При этом инсульт на фоне коронавирусной инфекции является одной из наиболее тяжелых форм патологии. В основе развития острых цереброваскулярных нарушений лежит сочетание различных механизмов, среди которых расстройствам системы гемостаза отводится ключевая роль. Представлен анализ современных литературных данных об особенностях развития острого инсульта у пациентов с COVID-19, приведены основные факторы риска тяжелого течения как самой инфекции, так и неврологических расстройств.

Скачать

Список литературы:
1. Needham E. J., Chou S. H., Coles A. J., Menon D. K. Neurological Implications of COVID-19 Infections. Neurocrit Care. 2020;32(3):667-671. https://doi.org/10.1007/s12028-020-00978-4
2. Lu R., Zhao X., Li J., Niu P., Yang B. [et al.]. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet. 2020;395(10224):565-574. https://doi.org/10.1016/S0140-6736(20)30251-8
3. Atzrodt C. L., Maknojia I., McCarthy R. D. P., Oldfield T. M., Po J. [et al.]. A guide to Covid-19: A global pandemic caused by the novel coronavirus SARS-COV-2. The FEBS Journal. 2020;287(17):3633-3650.https://doi.org/10.1111/febs.15375
4. Pollard C. A., Morran M. P., Nestor-Kalinoski A. L. The COVID-19 pandemic: A global health crisis. Physiological Genomics. 2020;52(11):549-557. https://doi.org/10.1152/physiolgenomics.00089.2020
5. Chen R., Liang W., Jiang M., Guan W., Zhan C. [et al.]. Medical Treatment Expert Group for COVID-19. Risk factors of fatal outcome in hospitalized subjects with coronavirus disease 2019 from a nationwide analysis in China. Chest. 2020;158(1):97-105. https://doi.org/10.1016/j.chest.2020.04.010
6. Li Y. C., Bai W. Z., Hashikawa T. The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients. J. Med. Virol. 2020;92(6):552-555. https://doi.org/10.1002/jmv.25728
7. Mao L., Jin H., Wang M., Hu Y., Chen S. [et al.]. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurology. 2020;77(6):683. https://doi.org/10.1001/jamaneurol.2020.1127
8. Yaghi S., Ishida K., Torres J., MacGrory B., Raz E. [et al.]. SARS-CoV-2 and Stroke in a New York Healthcare System. Stroke. 2020;51(7):2002-2011. https://doi.org/10.1161/STROKEAHA.120.030335
9. Driggin E., Madhavan M. V., Bikdeli B., Chuich T., Laracy J. [et al.]. Cardiovascular Considerations for Patients, Health Care Workers, and Health Systems During the COVID-19 Pandemic. J. Am. Coll. Cardiol. 2020;75(18):2352-2371. https://doi.org/10.1016/j.jacc.2020.03.031
10. Zhou F., Yu T., Du R., Fan G., Liu Y. [et al.]. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054-1062. https://doi.org/10.1016/S0140-6736(20)30566-3
11. Li Y., Li M., Wang M., Zhou Y., Chang J. [et al.]. Acute cerebrovascular disease following COVID-19: a single center, retrospective, observational study. Stroke Vasc. Neurol. 2020;5(3):279-284. https://doi.org/10.1136/svn-2020-000431
12. Nguyen T. N., Abdalkader M., Jovin T. G., Nogueira R. G., Jadhav A. P. [et al.]. Mechanical Thrombectomy in the Era of the COVID-19 Pandemic: Emergency Preparedness for Neuroscience Teams: A Guidance Statement From the Society of Vascular and Interventional Neurology. Stroke. 2020;51(6):1896-1901. https://doi.org/10.1161/STROKEAHA.120.030100
13. Chen G., Wu D., Guo W., Cao Y., Huang D. [et al.]. Clinical and immunological features of severe and moderate coronavirus disease 2019. J. Clin. Invest. 2020;130(5):2620-2629. https://doi.org/10.1172/JCI137244
14. Remmelink M., De Mendonça R., D’Haene N., De Clercq S., Verocq C. [et al.]. Unspecific post-mortem findings despite multiorgan viral spread in COVID-19 patients. Crit. Care.2020;24(1):495. https://doi.org/10.1186/s13054-020-03218-5
15. Harrison S. L., Fazio-Eynullayeva E., Lane D. A., Underhill P., Lip G. Y. H. Higher Mortality of Ischaemic Stroke Patients Hospitalized with COVID-19 Compared to Historical Controls. Cerebrovasc. Dis. 2021;50(3):326-331. https://doi.org/10.1159/000514137
16. Asadi-Pooya A. A., Simani L. Central nervous system manifestations of COVID-19: A systematic review. J. Neurol. Sci. 2020;413:116832. https://doi.org/10.1016/j.jns.2020.116832
17. Baig A. M., Khaleeq A., Ali U., Syeda H. Evidence of the COVID-19 Virus Targeting the CNS: Tissue Distribution, Host-Virus Interaction, and Proposed Neurotropic Mechanisms. ACS Chem. Neurosci. 2020;11(7):995-998. https://doi.org/10.1021/acschemneuro.0c00122
18. Iba T., Levy J. H., Connors J. M., Warkentin T. E., Thachil J., Levi M. The unique characteristics of COVID-19 coagulopathy. Crit. Care. 2020;24(1):360. https://doi.org/10.1186/s13054-020-03077-0
19. Klok F. A., Kruip M. J. H. A., van der Meer N. J. M., Arbous M. S., Gommers D. A. M. P. J. [et al.]. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb. Res. 2020;191:145-147. https://doi.org/10.1016/j.thromres.2020.04.013
20. Choi Y. H., Laaker C., Hsu M., Cismaru P., Sandor M., Fabry Z. Molecular Mechanisms of Neuroimmune Crosstalk in the Pathogenesis of Stroke. Int. J. Mol. Sci. 2021;22(17):9486. https://doi.org/10.3390/ijms22179486
21. Zayet S., Klopfenstein T., Kovẚcs R., Stancescu S., Hagenkötter B. Acute Cerebral Stroke with Multiple Infarctions and COVID-19, France, 2020. Emerg. Infect. Dis. 2020;26(9):2258-2260. https://doi.org/10.3201/eid2609.201791
22. Shulman J. G., Cervantes-Arslanian A. M. Infectious Etiologies of Stroke. Semin. Neurol. 2019;39(4):482-494. https://doi.org/10.1055/s-0039-1687915
23. Dong M., Zheng J. Letter to the editor: Headline stress disorder caused by Netnews during the outbreak of COVID-19. Health Expect. 2020;23(2):259-260. https://doi.org/10.1111/hex.13055
24. Oxley T. J., Mocco J., Majidi S., Kellner C. P., Shoirah H. [et al.]. Large-Vessel Stroke as a Presenting Feature of Covid-19 in the Young. N. Engl. J. Med. 2020;382(20):e60. https://doi.org/10.1056/NEJMc2009787
25. Divani A. A., Andalib S., Di Napoli M., Lattanzi S., Hussain M. S. [et al.]. Coronavirus Disease 2019 and Stroke: Clinical Manifestations and Pathophysiological Insights. J. Stroke Cerebrovasc. Dis. 2020;29(8):104941. https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.104941
26. Amraei R., Rahimi N. COVID-19, Renin-Angiotensin System and Endothelial Dysfunction. Cells. 2020;9(7):1652. https://doi.org/10.3390/cells9071652
27. Tang X., Zheng F. A review of ischemic stroke in COVID-19: currently known pathophysiological mechanisms. Neurol. Sci. 2022;43:67-79. https://doi.org/10.1007/s10072-021-05679-0
28. Bourgonje A. R., Abdulle A. E., Timens W., Hillebrands J. L., Navis G. J. [et al.]. Angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 and the pathophysiology of coronavirus disease 2019 (COVID-19). J. Pathol. 2020;251(3):228-248. https://doi.org/10.1002/path.5471
29. Wijeratne T., Gillard Crewther S., Sales C., Karimi L. COVID-19 Pathophysiology Predicts That Ischemic Stroke Occurrence Is an Expectation, Not an Exception-A Systematic Review. Front. Neurol. 2021;11:607221. https://doi.org/10.3389/fneur.2020.607221
30. Kakarla V., Kaneko N., Nour M., Khatibi K., Elahi F. [et al.]. Pathophysiologic mechanisms of cerebral endotheliopathy and stroke due to Sars-CoV-2. J. Cereb. Blood Flow. Metab. 2021;41(6):1179-1192. https://doi.org/10.1177/0271678X20985666
31. Berlińska A., Świątkowska-Stodulska R., Sworczak K. Old Problem, New Concerns: Hypercortisolemia in the Time of COVID-19. Front. Endocrinol. (Lausanne). 2021;12:711612. https://doi.org/10.3389/fendo.2021.711612
32. Iwasaki M., Saito J., Zhao H., Sakamoto A., Hirota K., Ma D. Inflammation Triggered by SARS-CoV-2 and ACE2 Augment Drives Multiple Organ Failure of Severe COVID-19: Molecular Mechanisms and Implications. Inflammation. 2021;44(1):13-34. https://doi.org/10.1007/s10753-020-01337-3
33. Kaushik P., Kaushik M., Parveen S., Tabassum H., Parvez S. Cross-Talk Between Key Players in Patients with COVID-19 and Ischemic Stroke: A Review on Neurobiological Insight of the Pandemic. Mol. Neurobiol.2020;57(12):4921-4928. https://doi.org/10.1007/s12035-020-02072-4
34. Young M. J., Clyne C. D., Chapman K. E. Endocrine aspects of ACE2 regulation: RAAS, steroid hormones and SARS-CoV-2. J. Endocrinol. 2020;247(2):R45-R62. https://doi.org/10.1530/JE-20-0260
35. Tan T., Khoo B., Mills E. G., Phylactou M., Patel B. [et al.]. Association between high serum total cortisol concentrations and mortality from COVID-19. Lancet Diabetes Endocrinol. 2020;8(8):659-660. https://doi.org/10.1016/S2213-8587(20)30216-3
36. Loganathan S., Kuppusamy M., Wankhar W., Gurugubelli K. R., Mahadevappa V. H. [et al.]. Angiotensin-converting enzyme 2 (ACE2): COVID 19 gate way to multiple organ failure syndromes. Respir. Physiol. Neurobiol. 2021;283:103548. https://doi.org/10.1016/j.resp.2020.103548
37. Pal R., Banerjee M., Bhadada S. K. Cortisol concentrations and mortality from COVID-19. Lancet Diabetes Endocrinol.2020;8(10):809. https://doi.org/10.1016/S2213-8587(20)30304-1
38. Saba L., Gerosa C., Fanni D., Marongiu F., La Nasa G. [et al.]. Molecular pathways triggered by COVID-19 in different organs: ACE2 receptor-expressing cells under attack? A review. Eur. Rev. Med. Pharmacol. Sci. 2020;24(23):12609-12622. https://doi.org/10.26355/eurrev_202012_24058
39. Grasselli G., Tonetti T., Protti A., Langer T., Girardis M. [et al.]. Pathophysiology of COVID-19-associated acute respiratory distress syndrome: a multicentre prospective observational study. Lancet Respir. Med. 2020;8(12):1201-1208. https://doi.org/10.1016/S2213-2600(20)30370-
40. Yuki K., Fujiogi M., Koutsogiannaki S. COVID-19 pathophysiology: A review. Clin. Immunol. 2020;215:108427. https://doi.org/10.1016/j.clim.2020.108427
41. Li H., Liu Z., Ge J. Scientific research progress of COVID-19/SARS-CoV-2 in the first five months. J. Cell. Mol. Med. 2020;24(12):6558-6570. https://doi.org/10.1111/jcmm.15364
42. Hosoki K., Chakraborty A., Sur S. Molecular mechanisms and epidemiology of COVID-19 from an allergist’s perspective. J. Allergy Clin. Immunol. 2020;146(2):285-299. https://doi.org/10.1016/j.jaci.2020.05.033
43. Caricchio R., Gallucci M., Dass C., Zhang X., Gallucci S. [et al.]. Temple University COVID-19 Research Group. Preliminary predictive criteria for COVID-19 cytokine storm. Ann. Rheum. Dis. 2021;80(1):88-95. https://doi.org/10.1136/annrheumdis-2020-218323
44. Liu J., Li S., Liu J., Liang B., Wang X. [et al.]. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. EBioMedicine. 2020;55:102763. https://doi.org/10.1016/j.ebiom.2020.102763
45. Yang A. P., Li H. M., Tao W. Q., Yang X. J., Wang M. [et al.]. Infection with SARS-CoV-2 causes abnormal laboratory results of multiple organs in patients. Aging (Albany NY). 2020;12(11):10059-10069.
46. Nile S. H., Nile A., Qiu J., Li L., Jia X., Kai G. COVID-19: Pathogenesis, cytokine storm and therapeutic potential of interferons. Cytokine Growth Factor Rev. 2020;53:66-70. https://doi.org/10.1016/j.cytogfr.2020.05.002
47. Asakura H., Ogawa H. COVID-19-associated coagulopathy and disseminated intravascular coagulation. Int. J. Hematol. 2021;113(1):45-57. https://doi.org/10.1007/s12185-020-03029-y
48. Agbuduwe C., Basu S. Haematological manifestations of COVID-19: From cytopenia to coagulopathy. Eur. J. Haematol. 2020;105(5):540-546. https://doi.org/10.1111/ejh.13491
49. Castro R. A., Frishman W. H. Thrombotic Complications of COVID-19 Infection: A Review. Cardiol. Rev. 2021;29(1):43-47. https://doi.org/10.1097/CRD.0000000000000347
50. Miesbach W., Makris M. COVID-19: Coagulopathy, Risk of Thrombosis, and the Rationale for Anticoagulation. Clin. Appl. Thromb. Hemost. 2020;26:1076029620938149. https://doi.org/10.1177/1076029620938149
51. Soy M., Keser G., Atagündüz P., Tabak F., Atagündüz I., Kayhan S. Cytokine storm in COVID-19: pathogenesis and overview of anti-inflammatory agents used in treatment. Clin. Rheumatol. 2020;39(7):2085-2094. https://doi.org/10.1007/s10067-020-05190-5
52. Bradley B. T., Maioli H., Johnston R., Chaudhry I., Fink S. L. [et al.]. Histopathology and ultrastructural findings of fatal COVID-19 infections in Washington State: a case series. Lancet. 2020;396(10247):320-332. https://doi.org/10.1016/S0140-6736(20)31305-2
53. Terpos E., Ntanasis-Stathopoulos I., Elalamy I., Kastritis E., Sergentanis T. N. [et al.]. Hematological findings and complications of COVID-19. Am. J. Hematol. 2020;95(7):834-847. https://doi.org/10.1002/ajh.25829
54. Alhazzani W., Møller M. H., Arabi Y. M., Loeb M., Gong M. N. [et al.]. Surviving Sepsis Campaign: Guidelines on the Management of Critically Ill Adults with Coronavirus Disease 2019 (COVID-19). Crit. Care Med.2020;48(6):e440-e469. https://doi.org/10.1097/CCM.0000000000004363
55. Ahmed S., Zimba O., Gasparyan A. Y. Thrombosis in Coronavirus disease 2019 (COVID-19) through the prism of Virchow’s triad. Clin. Rheumatol. 2020;39(9):2529-2543. https://doi.org/10.1007/s10067-020-05275-1
56. Paniz-Mondolfi A., Bryce C., Grimes Z., Gordon R. E., Reidy J. [et al.]. Central nervous system involvement by severe acute respiratory syndrome coronavirus-2 (SARSCoV-2). J. Med. Virol. 2020;92(7):699-702. https://doi.org/10.1002/jmv.25915
57. Kipshidze N., Dangas G., White C. J., Kipshidze N., Siddiqui F. [et al.]. Viral Coagulopathy in Patients With COVID-19: Treatment and Care. Clin. Appl. Thromb. Hemost. 2020;26:1076029620936776. https://doi.org/10.1177/1076029620936776
58. Галстян Г. М. Коагулопатия при COVID-19. Пульмонология. 2020;30(5):645-657. [Galstjan G. M. Coagulopathy in COVID-19. Pul’monologija – Russian Pulmonology Journal. 2020;30(5):645-657. (In Russ.)]. https://doi.org/10.18093/0869-0189-2020-30-5-645-657
59. Caillon A., Trimaille A., Favre J., Jesel L., Morel O., Kauffenstein G. Role of neutrophils, platelets, and extracellular vesicles and their interactions in COVID19-associated thrombopathy. J. Thromb. Haemost. 2022;20(1):17-31. https://doi.org/10.1111/jth.15566
60. Tang N., Li D., Wang X., Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J. Thromb. Haemost. 2020;18(4):844-847. https://doi.org/10.1111/jth.14768

Ключевые слова: церебральный инсульт, COVID-19, осложнения, полиорганная недостаточность


Учредители:
Ставропольская государственная медицинская академия
Государственный научно-исследовательский институт курортологии
Пятигорская государственная фармацевтическая академия