logo
Медицинский вестник
Северного Кавказа
Научно-практический журнал
Зарегистрирован в Федеральной службе
по надзору за соблюдением законодательства
в сфере массовых коммуникаций
и охране культурного наследия
ПИ №ФС77-26521 от 7 декабря 2006 года
ISSN 2073-8137
rus
русский
eng
english

Поиск по сайту




Адрес редакции
355017, Ставрополь, улица Мира, 310.

Телефоны
(8652) 35-25-11, 35-32-29.

E-mail
medvestnik@stgmu.ru

Рейтинг@Mail.ru

Синтез коллагена в коже, его функциональные и структурные особенности

[Обзоры]
Борзых Ольга Борисовна; Шнайдер Наталья Алексеевна; Карпова Елена Ивановна; Петрова Марина Михайловна; Демина Ольга Михайловна; Насырова Регина Фаритовна;

Важнейшим структурным элементом кожи является коллаген, обеспечивающий основные механические и функциональные свойства кожи. При упоминании коллагена разные авторы чаще говорят о трех основных типах: коллаген I, II, III типов, в обзоре описаны все типы коллагена, участвующие в формировании межклеточного вещества кожи, а также функции, выполняемые им. Разобран сложный многоступенчатый процесс синтеза коллагена, на который влияют генетические и негенетические факторы.

Скачать

Список литературы:
1. Farage M. A., Miller K. W., Elsner P., Maibach H. I. Characteristic of aging skin. Adv. Wound Care (New Rochelle). 2013;2(1):5-10. https://doi.org/10.1089/wound.2011.0356
2. Burgeson R. E. The collagens of skin. Curr. Probl. Dermatol. 1987;17:61-75.
3. Arai K. Y., Hara T., Nagatsuka T., Kudo C., Tsuchiya S. [et al.]. Postnatal changes and sexual dimorphism in collagen expression in mouse skin. PLoS One. 2017;12(5):e0177534. https://doi.org/10.1371/journal.pone.0177534
4. Arseni L., Lombardi A., Orioli D. From Structure to Phenotype: Impact of Collagen Alterations on Human Health. Int. J. Mol. Sci. 2018;19(5):1407. https://doi.org/10.3390/ijms19051407
5. Tonniges J. R., Albert B., Calomeni E. P., Roy S., Lee J. [et al.]. Collagen Fibril Ultrastructure in Mice Lacking Discoidin Domain Receptor 1. Microsc. Microanal. 2016;22(3):599-611. https://doi.org/10.1017/S1431927616000787
6. Luczynski M. T., Harrison P. T., Lima N., Krasny L., Paul A., Huang P. H. Spatial localisation of Discoidin Domain Receptor 2 (DDR2) signalling is dependent on its collagen binding and kinase activity. Biochem. Biophys. Res. Commun. 2018;501(1):124-130. https://doi.org/10.1016/j.bbrc.2018.04.191
7. Ahmed T., Nash A., Clark K. E., Ghibaudo M., de Leeuw N. H. [et al.]. Combining nano-physical and computational investigations to understand the nature of «aging» in dermal collagen. Int. J. Nanomedicine. 2017;12:3303-3314. https://doi.org/10.2147/IJN.S121400
8. Pawlaczyk M., Lelonkiewicz M., Wieczorowski M. Age-dependent biomechanical properties of the skin. Poster Der. Alergol. 2013;30(5):302-306. https://doi.org/10.5114/pdia.2013.38359
9. Solano F. Metabolism and Functions of Amino Acids in the Skin. Adv. Exp. Med. Biol. 2020;1265:187-199. https://doi.org/10.1007/978-3-030-45328-2_11
10. Gkogkolou P., Böhm M. Advanced glycation end products: Key players in skin aging? Dermatoendocrinol. 2012;4(3):259-270. https://doi.org/10.4161/derm.22028
11. Wahyudi H., Reynolds A. A., Li Y., Owen S. C., Yu S. M. Targeting collagen for diagnostic imaging and therapeutic delivery. J. Control Release. 2016;240:323-331. https://doi.org/10.1016/j.jconrel.2016.01.007
12. Ozcelikkale A., Dutton J. C., Grinnell F., Han B. Effects of dynamic matrix remodelling on en masse migration of fibroblasts on collagen matrices. J. R. Soc. Interface. 2017;14(135):20170287. https://doi.org/10.1098/rsif.2017.0287
13. Jansen K. A., Licup A. J., Sharma A., Rens R., MacKintosh F. C., Koenderink G. H. The Role of Network Architecture in Collagen Mechanics. Biophys. J. 2018;114(11):2665-2678. https://doi.org/10.1016/j.bpj.2018.04.043
14. Rodriguez-Pascual F., Slatter D. A. Collagen cross-linking: insights on the evolution of metazoan extracellular matrix. Sci. Rep. 2016;6:37374. https://doi.org/10.1038/srep37374
15. Jones M. G., Andriotis O. G., Roberts J. J., Lunn K., Tear V. J. [et al.]. Nanoscale dysregulation of collagen structure-function disrupts mechano-homeostasis and mediates pulmonary fibrosis. Elife. 2018;7:e36354. https://doi.org/10.7554/eLife.36354
16. Argyropoulos A. J., Robichaud P., Balimunkwe R. M., Fisher G. J., Hammerberg C. [et al.]. Alterations of Dermal Connective Tissue Collagen in Diabetes: Molecular Basis of Aged-Appearing Skin. PLoS One. 2016;11(4):e0153806. https://doi.org/10.1371/journal.pone.0153806
17. Walters B. D., Stegemann J. P. Strategies for directing the structure and function of three-dimensional collagen biomaterials across length scales. Acta Biomater. 2014;10(4):1488-1501. https://doi.org/10.1016/j.actbio.2013.08.038
18. Saunders J. T., Schwarzbauer J. E. Fibronectin matrix as a scaffold for procollagen proteinase binding and collagen processing. Mol. Biol. Cell. 2019;30(17):2218-2226. https://doi.org/10.1091/mbc.E19-03-0140
19. Kadler K. E. Fell Muir Lecture: Collagen fibril formation in vitro and in vivo. Int. J. Exp. Pathol. 2017;98(1):4-16. https://doi.org/10.1111/iep.12224
20. Gistelinck C., Gioia R., Gagliardi A., Tonelli F., Marchese L. [et al.]. Zebrafish Collagen Type I: Molecular and Biochemical Characterization of the Major Structural Protein in Bone and Skin. Sci. Rep. 2016;6:21540. https://doi.org/10.1038/srep21540
21. Bourhis J. M., Mariano N., Zhao Y., Harlos K., Exposito J. Y. [et al.]. Structural basis of fibrillar collagen tri merization and related genetic disorders. Nat. Struct. Mol. Biol. 2012;19(10):1031-1036. https://doi.org/10.1038/nsmb.2389
22. Bonté F., Girard D., Archambault J. C., Desmoulière A. Skin Changes During Ageing. Subcell. Biochem. 2019;91:249-280. https://doi.org/10.1007/978-981-13-3681-2_10
23. Boismal F., Serror K., Dobos G., Zuelgaray E., Bensussan A., Michel L. Skin aging: Pathophysiology and innovative therapies. Medicine Sciences (Paris). 2020;36(12):1163-1172. https://doi.org/10.1051/medsci/2020232
24. Hoop C. L., Zhu J., Nunes A. M., Case D. A., Baum J. Revealing Accessibility of Cryptic Protein Binding Sites within the Functional Collagen Fibril. Biomolecules. 2017;7(4):76. https://doi.org/10.3390/biom7040076
25. Tracy L. E., Minasian R. A., Caterson E. J. Extracellular Matrix and Dermal Fibroblast Function in the Healing Wound. Adv. Wound Care (New Rochelle). 2016;5(3):119-136. https://doi.org/10.1089/wound.2014.0561
26. Asgari M., Latifi N., Heris H. K., Vali H., Mongeau L. In vitro fibrillogenesis of tropocollagen type III in collagen type I affects its relative fibrillar topology and mechanics. Sci. Rep. 2017;7(1):1392. https://doi.org/10.1038/s41598-017-01476-y
27. Park A. C., Phan N., Massoudi D., Liu Z., Kernien J. F.[et al.]. Deficits in Col5a2 Expression Result in Novel Skin and Adipose Abnormalities and Predisposition to Aortic Aneurysms and Dissections. Am. J. Pathol. 2017;187(10):2300-2311. https://doi.org/10.1016/j.ajpath.2017.06.006
28. Godwin A. R. F., Starborg T., Sherratt M. J., Roseman A. M., Baldock C. Defining the hierarchical organisation of collagen VI microfibrils at nanometre to micrometre length scales. Acta Biomater. 2017;52:21-32. https://doi.org/10.1016/j.actbio.2016.12.023
29. Boudko S. P., Danylevych N., Hudson B. G., Pedchenko V.K. Basement membrane collagen IV: Isolation of functional domains. Methods Cell. Biol. 2018;143:171-185. https://doi.org/10.1016/bs.mcb.2017.08.010
30. Wullink B., Pas H. H., Van der Worp R. J., Kuijer R., Los L. I. Type VII Collagen Expression in the Human Vitreoretinal Interface, Corpora Amylacea and Inner Retinal Layers. PLoS One. 2015;10(12):e0145502. https://doi.org/10.1371/journal.pone.0145502
31. Gebauer J. M., Flachsenberg F., Windler C., Richer B., Baumann U. [et al.]. Structural and biophysical characterization of the type VII collagen vWFA2 subdomain leads to identification of two binding sites. FEBS Open Bio. 2020;10(4):580-592. https://doi.org/10.1002/2211-5463.12807
32. Sanchez A., Blanco M., Correa B., Perez-Martin R. I., Sotelo C. G. Effect of Fish Collagen Hydrolysates on Type I Collagen mRNA Levels of Human Dermal Fibroblast Culture. Mar. Drugs. 2018;16(5):144. https://doi.org/10.3390/md16050144
33. Geister K. A., Lopez-Jimenez A. J., Houghtaling S., Ho T. H., Vanacore R., Beier D. R. Loss of function of Colgalt1 disrupts collagen post-translational modification and causes musculoskeletal defects. Dis. Model. Mech. 2019;12(6):dmm037176. https://doi.org/10.1242/dmm.037176
34. Amar S., Smith L., Fields G. B. Matrix metalloproteinase collagenolysis in health and disease. Biochim. Biophys. Acta Mol. Cell. Res. 2017;1864(11 Pt A):1940-1951. https://doi.org/10.1016/j.bbamcr.2017.04.015
35. Xu S., Xu H., Wang W., Li S., Li H. [et al.]. The role of collagen in cancer: from bench to bedside. J. Transl. Med. 2019;17(1):309. https://doi.org/10.1186/s12967-019-2058-1
36. DiChiara A. S., Li R. C., Suen P. H., Hosseini A. S., Taylor R. J. [et al.]. A cysteine-based molecular code informs collagen C-propeptide assembly. Nat. Commun. 2018;9(1):4206. https://doi.org/10.1038/s41467-018-06185-2
37. Toba H., de Castro Brás L. E., Baicu C. F., Zile M. R., Lindsey M. L., Bradshaw A. D. Increased ADAMTS1 mediates SPARC-dependent collagen deposition in the aging myocardium. Am. J. Physiol. Endocrinol. Metab. 2016;310(11):E1027-E1035. https://doi.org/10.1152/ajpendo.00040.2016
38. Boote C., Palko J. R., Sorensen T., Mohammadvali A., Elsheikh A. [et al.]. Changes in posterior scleral collagen microstructure in canine eyes with an ADAMTS10 mutation. Mol. Vis. 2016;22:503-517.
39. Exposito J. Y., Valcourt U., Cluzel C., Lethias C. The fibrillar collagen family. Int. J. Mol. Sci. 2010;11(2):407-426. https://doi.org/10.3390/ijms11020407
40. Chow W. Y., Forman C. J., Bihan D., Puszkarska A. M., Rajan R. [et al.]. Proline provides site-specific flexibility for in vivo collagen. Sci. Rep. 2018;8(1):13809. https://doi.org/10.1038/s41598-018-31937-x
41. Albaugh V. L., Mukherjee K., Barbul A. Proline Precursors and Collagen Synthesis: Biochemical Challenges of Nutrient Supplementation and Wound Healing. J. Nutr. 2017;147(11):2011-2017. https://doi.org/10.3945/jn.117.256404
42. Spodenkiewicz M., Spodenkiewicz M., Cleary M., Massier M., Fitsialos G. [et al.]. Clinical Genetics of Prolidase Deficiency: An Updated Review. Biology (Basel). 2020;9(5):108. https://doi.org/10.3390/biology9050108
43. Karna E., Szoka L., Huynh T. Y. L., Palka J. A. Prolinedependent regulation of collagen metabolism. Cell. Mol. Life Sci. 2020;77(10):1911-1918. https://doi.org/10.1007/s00018-019-03363-3
44. Lu Y., Zhang S., Wang Y., Ren X., Han J. Molecular mechanisms and clinical manifestations of rare genetic disorders associated with type I collagen. Intractable Rare Dis. Res. 2019;8(2):98-107. https://doi.org/10.5582/irdr.2019.01064
45. Fidler A. L., Boudko S. P., Rokas A., Hudson B. G. The triple helix of collagens – an ancient protein structure that enabled animal multicellularity and tissue evolution. J. Cell. Sci. 2018;131(7):jcs203950. https://doi.org/10.1242/jcs.203950
46. Pullar J. M., Carr A. C., Vissers M. C. M. The Roles of Vitamin C in Skin Health. Nutrients. 2017;9(8):866. https://doi.org/10.3390/nu9080866
47. Kalamajski S., Bihan D., Bonna A., Rubin K., Farndale R. W. Fibromodulin Interacts with Collagen Cross-linking Sites and Activates Lysyl Oxidase. J. Biol. Chem. 2016;291(15):7951-7960. https://doi.org/10.1074/jbc.M115.693408
48. Padayatty S. J., Levine M. Vitamin C: the known and the unknown and Goldilocks. Oral Dis. 2016;22(6):463-493. https://doi.org/10.1111/odi.12446
49. Kanta J. Collagen matrix as a tool in studying fibroblastic cell behavior. Cell. Adh. Migr. 2015;9(4):308-316. https://doi.org/10.1080/19336918.2015.1005469
50. Zitnay J. L., Li Y., Qin Z., San B. H., Depalle B. [et al.]. Molecular level detection and localization of mechanical damage in collagen enabled by collagen hybridizing peptides. Nat. Commun. 2017;8:14913. https://doi.org/10.1038/ncomms14913
51. Tong T., Park J., Moon Y., Kang W., Park T. α-Ionone Protects Against UVB-Induced Photoaging in Human Dermal Fibroblasts. Molecules. 2019;24(9):E1804-1826. https://doi.org/10.3390/molecules24091804
52. Cheong M. L., Lai T. H., Wu W. B. Connective tissue growth factor mediates transforming growth factor β-induced collagen expression in human endometrial stromal cells. PLoS One. 2019;14(1):e0210765. https://doi.org/10.1371/journal.pone.0210765
53. Plou J., Juste-Lanas Y., Olivares V., Del Amo C., Borau C., García-Aznar J. M. From individual to collective 3D cancer dissemination: roles of collagen concentration and TGF-ß. Sci. Rep. 2018;8(1):12723. https://doi.org/10.1038/s41598-018-30683-4
54. Shin J. W., Kwon S. H., Choi J. Y., Na J. I., Huh C. H. [et al.]. Molecular Mechanisms of Dermal Aging and Antiaging Approaches. Int. J. Mol. Sci. 2019;20(9):2126. https://doi.org/10.3390/ijms20092126
55. Nigdelioglu R., Hamanaka R. B., Meliton A. Y., O’Leary E., Witt L. J. [et al.]. Transforming Growth Factor (TGF)-β Promotes de Novo Serine Synthesis for Collagen Production. J. Biol. Chem. 2016;291(53):27239-27251. https://doi.org/10.1074/jbc.M116.756247
56. Castiglioni S., Leidi M., Carpanese E., Maier J. A. Extracellular magnesium and in vitro cell differentiation: different behaviour of different cells. Magnes Res. 2013;26(1):24- 31. https://doi.org/10.1684/mrh.2013.0330
57. Orth M., Averina M., Chatzipanagiotou S., Faure G., Haushofer A. [et al.]. Opinion: redefining the role of the physician in laboratory medicine in the context of emerging technologies, personalised medicine and patient autonomy (‘4P medicine’). J. Clin. Pathology. 2019;72(3):191-197. https://doi.org/10.1136/jclinpath-2017-204734

Ключевые слова: коллаген, фибриллярные коллагены, нефибриллярные коллагены, синтез коллагена


Учредители:
Ставропольская государственная медицинская академия
Государственный научно-исследовательский институт курортологии
Пятигорская государственная фармацевтическая академия