Поиск по сайту
Адрес редакции
355017, Ставрополь, улица Мира, 310.
Телефоны
(8652) 35-25-11, 35-32-29.
E-mail
medvestnik@stgmu.ru
Журнал включён в Перечень ведущих рецензируемых научных журналов и изданий, в которых должны быть опубликованы результаты диссертаций на соискание учёной степени кандидата и доктора наук (решение Президиума ВАК Минобрнауки РФ №6/6, февраль 2010).
Журнал включён в Реферативный журнал и Базы данных ВИНИТИ РАН и зарегистрирован в Научной электронной библиотеке в базе данных Российского индекса научного цитирования на основании сублицензионного договора № 07-04/09-14 от 25 марта 2009 года.
Журнал индексируется: БД SCOPUS, Ulrich's International Periodicals Directory.
[Обзоры]
Климов Леонид Яковлевич; Петросян Мелине Артуровна; Верисокина Наталья Евгеньевна; Курьянинова Виктория Александровна; Атанесян Роза Артуровна; Бобрышев Дмитрий Викторович; Кириенко Ольга Сергеевна; Сариева Эллина Мерабовна;
Обзор посвящен влиянию дефицита витамина D на организм детей, рождённых раньше срока. Согласно результатам многочисленных исследований, недостаточное поступление в организм плода витамина D повышает риск развития бронхолёгочной дисплазии, инфекций нижних дыхательных путей, а также неонатального сепсиса. Имеются данные, подтверждающие негативное влияние гиповитаминоза D на физическое и нервно-психическое развитие. Обсуждается один из важнейших биологических эффектов витамина D, а именно – его участие в регуляции фосфорно-кальциевого обмена и ремоделировании костной ткани. Также описаны механизмы влияния паратиреоидного гормона (ПТГ) и кальцитонина (КТ) на регуляцию фосфорно-кальциевого гомеостаза. Повышение выживаемости новорожденных с экстремально низкой массой тела и очень низкой массой тела увеличивает частоту встречаемости с таким заболеванием, как остеопения – метаболическое заболевание костей недоношенных новорождённых, характеризующееся нарушением минерализации костной ткани вследствие нехватки витамина D, кальция и фосфора. Рассматриваются причины, клинические проявления, диагностика, лечение и профилактика данного заболевания.
Список литературы:
1. Spirichev V. B. About the biological effects of vitamin D. Pediatria. 2011;6:113-119.
2. Kasyanova A. N., Dolbnya S. V., Kuryaninova V. A., Anisimov G. S., Abramskaya L. M. [et al.] Vitamin D and its biological role in the body. Message 3. Methods of prevention and drug correction of vitamin D deficiency. Bulletin of the Young Scientist. 2016;12(1):6-13.
3. Deluca H. F. History of the discovery of vitamin D and its active metabolites. Bonekey Rep. 2014;8(3):479. https://doi.org/10.1038/bonekey.2013.213
4. Wacker M., Holick M. F. Vitamin D – effects on skeletal and extraskeletal health and the need for supplementation. Nutrients. 2013;5(1):111-148. https://doi.org/10.3390/nu5010111
5. Adams J. S., Rafison B., Witzel S., Reyes R. E., Shieh A. [et al.] Regulation of the extrarenal CYP27B1-hydroxylase. J. Steroid Biochem. Mol. Biol. 2014;144:22-27. https://doi.org/10.1016/j.jsbmb.2013.12.009
6. Ramagopalan S. V., Heger A., Berlanga A. J., Maugeri N. J., Lincoln M.R. [et al.] A ChIP-seq defined genome-wide map of vitamin D receptor binding: associations with disease and evolution. Genome Res. 2010;20(10):1352-1360. https://doi.org/10.1101/gr.107920.110
7. Maltsev S. V., Mansurova G. Sh., Zakirova A. M., Maltseva L. I., Vasilyeva E. N. The role of vitamin D in the mother-placenta-fetus system. The practice of medicine. 2016;1(93):26-31.
8. Zayachnikova T. E., Belan E. B., Krasilnikova A. S. Vitamin D deficiency in the «mother – placenta – fetus» system as a risk factor for disorders of physical and neurological development in premature infants. Medical review. 2019;5:20-25.
9. Hanson C., Jones G., Lyden E., Kaufmann M., Armas L., Anderson-Berry A. Vitamin D metabolism in the premature newborn: A randomized trial. Clin. Nutr. 2016;35(4):835-841. https://doi.org/10.1016/j.clnu.2015.07.023
10. Zakharova I. N., Maltsev S. V., Zubkov V. V., Kuryaninova V. A., Dmitriev A. V. [et al.] Vitamin D, low-weight, prematurely born and full-term newborns: time to change the paradigm. Breast cancer. Mother and child. 2020;3(2):142-148. https://doi.org/10.32364/2618-8430-2020-3-2-142-148
11. Zakharova I. N., Maltsev S. V., Zubkov V. V., Kuryaninova V. A., Dmitriev A.V. [et al.] The effect of vitamin D on the course of pregnancy and the health of newborns and young children: a modern view of the problem. Breast cancer. Mother and child. 2020;3(3):174-181. https://doi.org/10.32364/2618-8430-2020-3-3-174-181
12. Klimov L. Ya., Dolbnya S. V., Kuryaninova V. A., Alaverdyan L. S., Kasyanova A. N. [et al.] Vitamin D levels in newborns children of Stavropol Region. Medical News of North Caucasus. 2015;10(2):159-163. https://doi.org/10.14300/mnnc.2015.10037
13. Curtis E. M., Moon R. J., Dennison E. M., Harvey N. C. Prenatal calcium and vitamin D intake, and bone mass in later life. Curr. Osteoporos. Rep. 2014;12:194-204. https://doi.org/10.1007/s11914-014-0210-7
14. Narogan M. V., Ryumina I. I., Krokhina K. N., Zubkov V. V., Zakharova I. N. [et al.] Vitamin D in newborns and premature infants. Neonatology: news, opinions, training. 2018;3(21):134-138.
15. Zhuravleva L. N., Novikova V. I. Experience in the use of vitamin D in the complex therapy of pneumonia in premature newborns. Reproductive health. Eastern Europe. 2020;10(5):598-605. https://doi.org/10.34883/PI.2020.10.5.007
16. Zakharova I. N., Klimov L. Ya., Kasyanova A. N., Kuryaninova V. A., Dolbnya S. V. [et al.] Interrelationships between the incidence of infectious diseases and vitamin D deficiency: the current state of the problem. Infectious diseases. 2018;16(3):69-78. https://doi.org/10.20953/1729-9225-2018-3-69-78
17. Zakharova I. N., Klimov L. Ya., Kasyanova A. N., Kuryaninova V. A., Dolbnya S. V. [et al.] The relationship between infectious morbidity and vitamin D deficiency: the current state of the problem. Infectious diseases. 2018;16(3):69-78. https://doi.org/10.24110/0031-403X-2017-96-4-171-179
18. Holick M. F. Vitamin D: evolutionary, physiological and health perspectives. Curr. Drug Targets. 2011;12(1):4-18. https://doi.org/10.2174/138945011793591635
19. Fleet J. C., Schoch R. D. Molecular mechanisms for regulation of intestinal calcium absorption by vitamin D and other factors. Crit. Rev. Clin. Lab. Sci. 2010;47(4):181-195. https://doi.org/10.3109/10408363.2010.536429
20. Baldock P. A., Thomas G. P., Hodge J. M., Baker S. U., Dressel U. [et al.] Vitamin D action and regulation of bone remodeling: suppression of osteoclastogenesis by the mature osteoblast. J. Bone Miner. Res. 2006;21(10):1618-1626. https://doi.org/10.1359/jbmr.060714
21. Kovacs C. S. Bone development and mineral homeostasis in the fetus and neonate: roles of the calciotropic and phosphotropic hormones. Physiol. Rev. 2014;94(4):1143-1218. https://doi.org/10.1152/physrev.00014.2014
22. Brunetti G., Papadia F., Tummolo A., Fischetto R., Nicastro F. [et al.] Impaired bone remodeling in children with osteogenesis imperfecta treated and untreated with bisphosphonates: the role of DKK1, RANKL, and TNF-α. Osteoporos. Int. 2016;27(7):2355-2365. https://doi.org/10.1007/s00198-016-3501-2
23. Brunetti G., Tummolo A., D’Amato G., Gaeta A., Ortolani F. [et al.] Mechanisms of enhanced osteoclastogenesis in alkaptonuria. Am. J. Pathol. 2018;188(4):1059-1068. https://doi.org/10.1016/j.ajpath.2017.12.008
24. Pereira-da-Silva L., Costa A., Pereira L., Filipe A., Virella D. [et al.] Early high calcium and phosphorus intake by parenteral nutrition prevents short-term bone strength decline in preterm infants. J. Pediatr. Gastroenterol. Nutr. 2011;52(2):203-209. https://doi.org/10.1097/MPG.0b013e3181f8b295
25. Rauch F., Schoenau E. Skeletal development in premature infants. a review of bone physiology beyond nutritional aspects. Arch. Dis. Child. Fetal Neonatal Ed. 2002;86:82. https://doi.org/10.1136/fn.86.2.f82
26. Sethi A., Priyadarshi M., Agarwal R. Mineral and bone physiology in the foetus, preterm and full-term neonates. Semin Fetal Neonatal Med. 2020;25(1):101076. https://doi.org/10.1016/j.siny.2019.101076
27. Kovacs C. S. Calcium, phosphorus, and bone metabolism in the fetus and newborn. Early Hum. Dev. 2015;91(11):623-628. https://doi.org/10.1016/j.earlhumdev.2015.08.007
28. Greer F. R. Controversies in neonatal nutrition: macronutrients and micronutrients. Gastroenterology and Nutrition: Neonatology Question and Controversies. 2nd ed. / Ed. J. Neu. Philadelphia: Elsevier; Saunders; 2012:129-155.
29. Abrams S. A. Committee on Nutrition. Calcium and vitamin D requirements of enterally fed preterm infants. Pediatrics. 2013;131(5):1676-1683. https://doi.org/10.1542/peds.2013-0420
30. Chinoy A., Mughal M. Z., Padidela R. Metabolic bone disease of prematurity: causes, recognition, prevention, treatment and long-term consequences. Arch. Dis. Child Fetal Neonatal Ed. 2019;104(5):560-566. https://doi.org/10.1136/archdischild-2018-316330
31. Faienza M. F., D’Amato E., Natale M. P., Grano M., Chiarito M. [et al.] Metabolic bone disease of prematurity: diagnosis and management. Front. Pediatr. 2019;12(7):143. https://doi.org/10.3389/fped.2019.00143
32. Wojda S. J., Donahue S. W. Parathyroid hormone for bone regeneration. J. Orthop. Res. 2018;36(10):2586-2594. https://doi.org/10.1002/jor.24075
33. Xie J., Guo J., Kanwal Z., Wu M., Lv X. [et al.] Calcitonin and bone physiology: in vitro, in vivo, and clinical investigations. Int. J. Endocrinol. 2020;10. https://doi.org/10.1155/2020/3236828
34. Sato E., Williams M. R., Sanford J. A., Sen G. L., Nakama T. [et al.] The parathyroid hormone family member TIP39 interacts with sarco/endoplasmic reticulum Ca2+ -ATPase activity by influencing calcium homoeostasis. Exp. Dermatol. 2017;26(9):792-797. https://doi.org/10.1111/exd.13294
35. Pittard W. B. 3rd, Geddes K. M., Hulsey T. C., Hollis B. W. Osteocalcin, skeletal alkaline phosphatase, and bone mineral content in very low birth weight infants: a longitudinal assessment. Pediatr. Res. 1992;31(2):181-185. https://doi.org/10.1203/00006450-199202000-00019
36. Moreira A., February M., Geary C. Parathyroid hormone levels in neonates with suspected osteopenia. J. Paediatr. Child Health. 2013;49(1):12-16. https://doi.org/10.1111/jpc.12052
37. Lerner U. H. Deletions of genes encoding calcitonin/alpha-CGRP, amylin and calcitonin receptor have given new and unexpected insights into the function of calcitonin receptors and calcitonin receptor-like receptors in bone. J. Musculoskelet Neuronal Interact. 2006;6(1):87-95. PMID:16675892.
38. Ventura A., Brunetti G., Colucci S., Oranger A., Ladisa F. [et al.] Glucocorticoid-induced osteoporosis in children with 21-hydroxylase deficiency. Biomed. Res. Int. 2013;2013:250462. https://doi.org/10.1155/2013/250462
39. Boyce B. F., Xing L. Biology of RANK, RANKL, and osteoprotegerin. Arthritis Res. Ther. 2007;9(1):1. https://doi.org/10.1186/ar2165
40. Кrokhina K. N., Smirnova I. E., Kucherenko A. G., Belyaeva I. A. Features of bone tissue formation in newborns. Russian Pediatric Journal. 2010;5:36-41.
41. Done S. L. Fetal and neonatal bone health: update on bone growth and manifestations in health and disease. Pediatr. Radiol. 2012;42:158-176. https://doi.org/10.1007/s00247-011-2251-8
42. Rauch F., Schoenau E. Skeletal development in premature infants: a review of bone physiology beyond nutritional aspects. Arch. Dis. Child Fetal Neonatal Ed. 2002;86(2):82-85. https://doi.org/10.1136/fn.86.2.f82
43. Rustico S. E., Calabria A. C., Garber S. J. Metabolic bone disease of prematurity. J. Clin. Transl. Endocrinol. 2014;1(3):85-91. https://doi.org/10.1016/j.jcte.2014.06.004
44. Nehra D., Carlson S. J., Fallon E. M., Kalish B., Potemkin A. K. [et al.] A.S.P.E.N. Clinical guidelines: nutritional support of neonatal patients at risk for metabolic bone disease. JPEN. 2013;37(5):570-598. https://doi.org/10.1177/0148607113487216
45. Viswanathan S., Khasawneh W., McNelis K., Dykstra C., Amstadt R. [et al.] Metabolic bone disease: a continued challenge in extremely low birth weight infants. JPEN J. Parenter. Enteral Nutr. 2014;38(8):982-990. https://doi.org/10.1177/0148607113499590
46. Streym S., Moller U. К., Rejnmark L., Heickendorff L., Mosekilde L., Vestergaard P. Maternal and infant vitamin D status during the first 9 months of infant life-a cohort study. Eur. J. Clin. Nutr. 2013;67(10):1022-1028. https://doi.org/10.1038/ejcn.2013.152
47. Brunetti G., Faienza M. F., Piacente L., Ventura A., Oranger A. [et al.] High dickkopf-1 levels in sera and leukocytes from children with 21-hydroxylase deficiency on chronic glucocorticoid treatment. Am. J. Physiol. Endocrinol. Metab. 2013;304(5):546-554. https://doi.org/10.1152/ajpendo.00535.2012
48. Ruiz-Gaspà S., Martinez-Ferrer A., Guañabens N., Dubreuil M., Peris P. [et al.] Effects of bilirubin and sera from jaundiced patients on osteoblasts: contribution to the development of osteoporosis in liver diseases. Hepatology. 2011;54(6):2104-2113. https://doi.org/10.1002/hep.24605
49. Gomella T. L. Neonatology: Management, Procedures, OnCall Problems, Diseases, and Drugs. 25th ed. McGraw-Hill. 2013.
50. Christmann V., Gradussen C. J., Körnmann M. N., Roeleveld N., van Goudoever J. B., van Heijst A. F. Changes in biochemical parameters of the calcium-phosphorus homeostasis in relation to nutritional intake in very-low-birthweight. Infants Nutrients. 2016;8(12):764. https://doi.org/10.3390/nu8120764
51. Chin L. K., Doan J., Teoh Y. S., Stewart A., Forrest P., Simm P. J. Outcomes of standardised approach to metabolic bone disease of prematurity. J. Paediatr. Child Health. 2018;54(6):665-670. https://doi.org/10.1111/jpc.13813
52. Isojima T., Kushima R., Goishi K., Tsuchida S., Watanabe T. [et al.] Mineral status of premature infants in early life and linear growth at age 3. Pediatr. Int. 2015;57(5):864-869. https://doi.org/10.1111/ped.12657
53. Hung Y. L., Chen P. C., Jeng S. F., Hsieh C. J., Peng S. S. [et al.] Serial measurements of serum alkaline phosphatase for early prediction of osteopaenia in preterm infants. J. Paediatr. Child Health. 2011;47(3):134-139. https://doi.org/10.1111/j.1440-1754.2010.01901.x
54. Catache M., Leone C. R. Role of plasma and urinary calcium and phosphorus measurements in early detection of phosphorus deficiency in very low birth weight infants. Acta Paediatr. 2003;92(1):76-80. https://doi.org/10.1111/j.1651-2227.2003.tb00473.x
55. Rehman M. U., Narchi H. Metabolic bone disease in the preterm infant: Current state and future directions. World J. Methodol. 2015;5(3):115-121. https://doi.org/10.5662/wjm.v5.i3.115
56. Harrison С. М., Johnson K., McKechnie E. Osteopenia of prematurity: national survey and review of 5. Practice. Acta Paediatr. 2008;97:407-413. https://doi.org/10.1111/j.1651-2227.2007.00721.x
57. Rooz R., Genzel-Borovicheschi O., Prokitte G. Neonatologiya. Practical recommendations. M.: Meditsinskaya literatura, 2011:568.
58. Viljakainen H. T., Saarnio E., Hytinantti T., Miettinen M., Surcel H. [et al.] Maternal vitamin D status determines bone variables in the newborn. J. Clin. Endocrinol. Metab. 2010;95(4):1749-1757. https://doi.org/10.1210/jc.2009-1391
59. Holick M. F., Binkley N. C., Bischoff-Ferrari H. A., Gordon C. M., Hanley D. A. [et al.] Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 2011;96(7):1911-1930. https://doi.org/10.1210/jc.2011-0385
60. Stalnaker K. A., Poskey G. A. Osteopenia of prematurity: does physical activity improve bone mineralization in preterm infants? Neonatal Netw. 2016;35(2):95-104. https://doi.org/10.1891/0730-0832.35.2.95
Ключевые слова: витамин D, недостаточность витамина D, недоношенный новорождённый, паратиреоидный гормон, кальцитонин, остеопения недоношенных