logo
Медицинский вестник
Северного Кавказа
Научно-практический журнал
Зарегистрирован в Федеральной службе
по надзору за соблюдением законодательства
в сфере массовых коммуникаций
и охране культурного наследия
ПИ №ФС77-26521 от 7 декабря 2006 года
ISSN 2073-8137
rus
русский
eng
english

Поиск по сайту




Адрес редакции
355017, Ставрополь, улица Мира, 310.

Телефоны
(8652) 35-25-11, 35-32-29.

E-mail
medvestnik@stgmu.ru

Рейтинг@Mail.ru

Возможности и перспективы иммунотерапии меланомы с использованием дендритных клеток

[Обзор]
Афанасьева Галина Александровна; Каретникова Алёна Юрьевна; Щетинин Евгений Вячеславович;

В обзоре обобщены результаты экспериментальных и клинических исследований возможностей иммунотерапии меланомы с использованием дендритных клеток. Эффективная эрадикация опухолевых клеток зависит от сложного взаимодействия между опухолью и различными компонентами иммунной системы. Дендритные клетки (DC) участвуют во всех типах иммунных реакций, в том числе противоопухолевом иммунитете. Интра- и перитуморальная плотность распределения DC в опухолевой ткани и их функциональная активность коррелируют с клинической стадией меланомы и выживаемостью пациентов. Прослежено поступательное изменение подходов с применением DC в качестве эффективного и безопасного метода лечения меланомы.

Скачать

Список литературы:
1. World Health Organization. Skin cancers. Cancer Incidence and Mortality Worldwide. 2019, March. http://globocan.iarc.fr/
2. Rastrelli M., Tropea S., Rossi C. R., Alaibac M.. Melanoma: epidemiology, risk factors, pathogenesis, diagnosis and classification. In Vivo. 2014;28(6):1005-1011.
3. Whiteman D. C., Green A. C., Olsen C. M. The growing burden of invasive melanoma: projections of incidence rates and numbers of new cases in six susceptible populations through 2031. J. Invest. Dermatol. 2016;136(6):1161-1171. https://doi.org/10.1016/j.jid.2016.01.035
4. Bray F., Ferlay J., Soerjomataram I., Siegel R. L., Torre L. A., Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer J. Clin. 2018;68(6):394-424. https://doi.org/10.3322/caac.21492
5. Winder M., Virós A. Mechanisms of Drug Resistance in Melanoma. Hand. Exper. Pharmacol. 2018;249:91-108. https://doi.org/10.1007/164_2017_17
6. Kozar I., Margue C., Rothengatter S., Haan C., Kreis S. Many ways to resistance: How melanoma cells evade targeted therapies. Biochim. Biophys. Acta Rev. Cancer. 2019;1871(2):313-322. https://doi.org/10.1016/j.bbcan.2019.02.002
7. Lugovic-Mihic L., Cesic D., Vukovic P., Novak Bilić G., Šitum M., Špoljar S. Melanoma Development: Current Knowledge on Melanoma Pathogenesis. Acta Dermatovenerol. Croatica. 2019;27(3):163-168.
8. Shah D. J., Dronca R. S. Latest Advances in Chemotherapeutic, Targeted, and Immune Approaches in the Treatment of Metastatic Melanoma. Mayo Clinic Proc. 2014;89(4):504-519. https://doi.org/10.1016/j.mayocp.2014.02.002
9. Bhandaru M., Rotte A. Monoclonal Antibodies for the Treatment of Melanoma: Present and Future Strategies. Methods Molec. Biol. 2019;1904:83-108. https://doi.org/10.1007/978-1-4939-8958-4_4
10. Gross S., Erdmann M., Haendle I., Voland S., Berger T. [et al.]. Twelve-year survival and immune correlates in dendritic cell-vaccinated melanoma patients. JCI Insight. 2017;2(8):e91438. https://doi.org/10.1172/jci.insight.91438
11. Yi H. D., Appel S. Carrent status and future perspectives of dendritic cell-based cancer immunotherapy. Scand. J. Immun. 2013;78:167-171. https://doi.org/10.1111/sji.12060
12. Sabado R. L., Balan S., Bhardwaj N. Dendritic cell-based immunotherapy. Cell Res. 2017;27:74-95. https://doi.org/10.1038/cr.2016.157
13. Enk A. H., Jonuleit H., Saloga J., Knop J. Dendritic cells as mediators of tumor-induced tolerance in metastatic melanoma. Int. J. Cancer. 1997;73(3):309-316. https://doi.org/10.1002/(sici)1097-0215(19971104)73:33.0.co;2-3
14. Love-Schimenti C. D., Kripke M. L. Inhibitory effect of a dendritic epidermal T cell line on K1735 melanoma cells in vivo and in vitro. J. Leuk. Biol. 1994;55(3):379-384. https://doi.org/10.1002/jlb.55.3.379
15. Mellman I. Dendritic cells: master regulators of the immune response. Cancer Immun. Res. 2013;1(3):145-149. https://doi.org/10.1158/2326-6066.CIR-13-0102
16. Dong H., Strome S. E., Salomao D. R., Tamura H., Hirano F. [et al.]. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nature Med. 2002;8(8):793-800. https://doi.org/10.1038/nm730
17. Patel S. P., Kurzrock R. PD-L1 Expression as a Predictive Biomarker in Cancer Immunotherapy. Molec. Cancer Ther. 2015;14(4):847-856. https://doi.org/10.1158/1535-7163.MCT-14-0983
18. Kythreotou A., Siddique A., Mauri F. A., Bower M., Pinato D. J. PD-L1. J. Clin. Path. 2018;71(3):189-194. https://doi.org/10.1136/jclinpath-2017-204853
19. Alessi C., Scapulatempo Neto C., Viana C. R., Vazquez V. L. PD-1/PD-L1 and VEGF-A/VEGF-C expression in lymph node microenvironment and association with melanoma metastasis and survival. Melanoma Res. 2017;27(6):565-572. https://doi.org/10.1097/CMR.0000000000000396
20. Buchbinder E. I., Desai A. CTLA-4 and PD-1 Pathways: Similarities, Differences, and Implications of Their Inhibition. American J. Clin. Oncol. 2016;39(1):98-106. https://doi.org/10.1097/COC.0000000000000239
21. Xu X., Zong Y., Gao Y., Sun X., Zhao H. [et al.]. VEGF Induce Vasculogenic Mimicry of Choroidal Melanoma through the PI3k Signal Pathway. BioMed Res. Int. 2019;2019:3909102. https://doi.org/10.1155/2019/3909102
22. Prud’homme G. J. Pathobiology of transforming growth factor beta in cancer, fibrosis and immunologic disease, and therapeutic considerations. Lab. Invest. 2007;87(11):1077-1091. https://doi.org/10.1038/labinvest.3700669
23. Busse A., Keilholz U. Role of TGF-β in melanoma. Curr. Pharmac. Biotech. 2011;12(12):2165-2175. https://doi.org/10.2174/138920111798808437
24. Golan T., Parikh R., Jacob E., Vaknine H., Zemser-Werner V. [et al.]. Adipocytes sensitize melanoma cells to environmental TGF-β cues byrepressing the expression of miR-211. Sci. Sign. 2019;12(591):eaav6847. https://doi.org/10.1126/scisignal.aav6847
25. Feng H., Jia X. M., Gao N. N., Tang H., Huang W., Ning N. Overexpressed VEPH1 inhibits epithelial-mesenchymal transition, invasion, and migration of human cutaneous melanoma cells through inactivating the TGF-β signaling pathway. Cell Cycle. 2019;18(21):2860-2875. https://doi.org/10.1080/15384101.2019.1638191
26. Gardner A., Ruffell B. Dendritic Cells and Cancer Immunity. Trends Immunol. 2016;37(12):855-865. https://doi.org/10.1016/j.it.2016.09.006
27. Wiguna A. P., Walden P. Role of IL-10 and TGF-β in melanoma. Exp. Dermatol. 2015;24(3):209-214. https://doi.org/10.1111/exd.12629
28. Harel M., Ortenberg R., Varanasi S. K., Mangalhara K. C., Mardamshina M. [et al.]. Proteomics of Melanoma Response to Immunotherapy Revels Mitochondrial Dependence. Cell. 2019;179(1):236-250.e18. https://doi.org/10.1016/j.cell.2019.08.012
29. Lee N., Zakka L. R., Mihm M. C. Jr., Schatton T. Tumour-infiltrating lymphocytes in melanoma prognosis and cancer immunotherapy. Pathology. 2016;48(2):177-187. https://doi.org/10.1016/j.pathol.2015.12.006
30. Nguyen L. T., Saibil S. D., Sotov V., Le M. X., Khoja L. [et al.]. Phase II clinical trial of adoptive cell therapy for patients with metastatic melanoma with autologous tumor-infiltrating lymphocytes and low-dose interleukin-2. Cancer Immunol. Immunother. 2019;68(5):773-785. https://doi.org/10.1007/s00262-019-02307-x
31. Li S., Song Y., Quach C., Guo H., Jang G. B. [et al.]. Transcriptional regulation of autophagy-lysosomal function in BRAF-driven melanoma progression and chemoresistance. Nat. Com. 2019;10(1):1693. https://doi.org/10.1038/s41467-019-09634-8
32. Geskin L. J., Damiano J. J., Patrone C. C., Butterfield L. H., Kirkwood J. M., Falo L. D. Three antigen-loading methods in dendritic cell vaccines for metastatic melanoma. Melanoma Res. 2018;28(3):211-221. https://doi.org/10.1097/CMR.0000000000000441
33. Dillman R. O., Selvan S. R., Schiltz P. M. Patient-specific dendritic-cell vaccines for metastatic melanoma. New Eng. J. Med. 2006;355(11):1179-1181. https://doi.org/10.1056/NEJMc061667
34. Eggermont A. M. M., Crittenden M., Wargo J. Combination Immunotherapy Development in Melanoma. American Soc. Clin. Oncol. Educ. Book. 2018;38:197-207. https://doi.org/10.1200/EDBK_201131
35. Livingstone A., Agarwal A., Stockler M. R., Menzies A. M., Howard K., Morton R. L. Preferences for Immunotherapy in Melanoma: A Syst. Rev. Ann. Surg. Oncol. 2020;27(2):571- 584. https://doi.org/10.1245/s10434-019-07963-y
36. Rodríguez-Cerdeira C., Carnero Gregorio M., López-Barcenas A., Sánchez-Blanco E., Sánchez-Blanco B. [et al.]. Advances in Immunotherapy for Melanoma: A Comprehensive Review. Med. Inflam. 2017;2017:3264217. https://doi.org/10.1155/2017/3264217
37. de Rosa F., Ridolfi L., Fiammenghi L., Petrini M., Granato A. M. [et al.]. Dendritic cell vaccination for metastatic melanoma: a 14-year monoinstitutional experience. Melanoma Res. 2017;27(4):351-357. https://doi.org/10.1097/CMR.0000000000000356
38. Dillman R. O., Cornforth A. N., Nistor G. I., McClay E. F., Amatruda T. T., Depriest C. Randomized phase II trial of autologous dendritic cell vaccines versus autologous tumor cell vaccines in metastatic melanoma: 5-year follow up and additional analyses. J. Immunother. Cancer. 2018;6(1):19. https://doi.org/10.1186/s40425-018-0330-1
39. Nedelcu R. I., Ion D. A, Holeab C. A., Cioplea M. D., Brînzea A., Zurac S. A. Dendritic cells in melanoma – immunohistochemical study and research trends. Rom. J. Morphol. Embryol. 2015;56(3):997-1002.
40. El Marsafy S., Bagot M., Bensussan A., Mauviel A. Dendritic cells in the skin – potential use for melanoma treatment. Pigment Cell Melanoma Res. 2009;22(1):30-41. https://doi.org/10.1111/j.1755-148X.2008.00532.x
41. Santos P. M., Butterfield L. H. Dendritic Cell-Based Cancer Vaccines. J. Immun. 2018;200(2):443-449. https://doi.org/10.4049/jimmunol.1701024
42. Tucci M., Stucci L. S., Mannavola F., Passarelli A., D’Oronzo S. [et al.]. Defective levels of both circulating dendritic cells and T-regulatory cells correlate with risk of recurrence in cutaneous melanoma. Clin. Translat. Oncol. 2019;21(7):845-854. https://doi.org/10.1007/s12094-018-1993-2
43. Mellman I. Dendritic cells: master regulators of the immune response. Cancer Immun. Res. 2013;1(3):145-149. https://doi.org/10.1158/2326-6066.CIR-13-0102
44. Llopiz D., Ruiz M., Infante S., Villanueva L., Silva L. [et al.]. IL-10 expression defines an immunosuppressive dendritic cell population induced by antitumor therapeutic vaccination. Oncotarget. 2017;8:2659-2671. https://doi.org/10.18632/oncotarget.13736
45. Yao W., Li Y., Zeng L., Zhang X., Zhou Z. [et al.]. Intratumoral injection of dendritic cells overexpressing interleukin‑12 inhibits melanoma growth. Oncol. Rep. 2019;42(1):370-376. https://doi.org/10.3892/or.2019.7165
46. Cauwels A., Van Lint S., Paul F., Garcin G., De Koker S. [et al]. Delivering Type I Interferon to Dendritic Cells Empowers Tumor Eradication and Immune Combination Treatments. Cancer Res. 2018;78(2):463-474. https://doi.org/10.1158/0008-5472.CAN-17-1980
47. Wculek S. K., Amores-Iniesta J., Conde-Garrosa R., Khouili S. C., Melero I., Sancho D. Effective cancer immunotherapy by natural mouse conventional type-1 dendritic cells bearing dead tumor antigen. J. Immunother. Cancer. 2019;7(1):100. https://doi.org/10.1186/s40425-019-0565-5
48. Gasser O., Sharples K. J., Barrow C., Williams G. M., Bauer E. [et al.]. A phase I vaccination study with dendritic cells loaded with NY-ES-1 and α-galactosylceramide: induction of polyfunctional T cells in high-risk melanoma patients. Cancer Immun. Immunother. 2018;67(2):285-298. https://doi.org/10.1007/s00262-017-2085-9
49. Borchers S., Maβlo C., Müller C. A., Tahedl A., Volkind J. [et al.]. Detection of ABCB5 tumour antigen-specific CD8(+) T cells in melanoma patients and implications for immunotherapy. Clin. Exр. Immun. 2018;191(1):74-83. https://doi.org/10.1111/cei.13053
50. Seyfizadeh N., Muthuswamy R., Mitchell D. A., Nierkens S., Seyfizadeh N. Migration of dendritic cells to the lymph nodes and its enhancement to drive anti-tumor responses. Crit. Rev. Oncol. Hematol. 2016;107:100-110. https://doi.org/10.1016/j.critrevonc.2016.09.002
51. Santana-Magal N., Farhat-Younis L., Gutwillig A., Gleiberman A., Rasoulouniriana D. [et al.]. Melanoma-Secreted Lysosomes Trigger Monocyte-Derived Dendritic Cell Apoptosis and Limit Cancer Immunotherapy. Cancer Res.
2020;80(10):1942-1956. https://doi.org/10.1158/0008-5472.CAN-19-2944
52. Zhang Y., Guo C., Liu L., Xu J., Jiang H. [et al.]. ZnO-based multifunctional nanocomposites to inhibit progression and metastasis of melanoma by eliciting antitumor immunity via immunogenic cell death. Theranostics. 2020;10(24):11197-11214. https://doi.org/10.7150/thno.44920
53. Meka R. R., Mukherjee S., Patra C. R., Chaudhuri A. Shikimoyl-ligand decorated gold nanoparticles for use in ex vivo engineered dendritic cell based DNA vaccination. Nanoscale. 2019;11(16):7931-7943. https://doi.org/10.1039/c8nr10293g
54. Zhang D., Wu T., Qin X., Qiao Q., Shang L. [et al.]. Intracellularly Generated Immunological Gold Nanoparticles for Combinatorial Photothermal Therapy and Immunotherapy against Tumor. Nano Lett. 2019;19(9):6635-6646. https://doi.org/10.1021/acs.nanolett.9b02903
55. Gulla S. K., Rao B. R., Moku G., Jinka S., Nimmu N. V. [et al.]. In vivo targeting of DNA vaccines to dendritic cells using functionalized gold nanoparticles. Biomat. Sci. 2019;7(3):773-788. https://doi.org/10.1039/c8bm01272e
56. Weiss S. A., Wolchok J. D., Sznol M. Immunotherapy of Melanoma: Facts and Hopes. Clin. Cancer Res. 2019;25(17):5191-5201. https://doi.org/10.1158/1078-0432.CCR-18-1550
57. Jones B. Sequencing for tailored melanoma immunotherapy. Nature Rev. Genet. 2015;16(5):259. https://doi.org/10.1038/nrg3945
58. Carreno B. M., Magrini V., Becker-Hapak M., Kaabinejadian S., Hundal J. [et al.]. A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science. 2015;348(6236):803-808. https://doi.org/10.1126/science.aaa3828
59. Karbach J., Gnjatic S., Biskamp M., Atmaca A., Weidmann E. [et al.]. Long-term complete remission following radiosurgery and immunotherapy in a melanoma patient with brain metastasis: immunologic correlates. Cancer Immun. Res. 2014;2(5):404-409. https://doi.org/10.1158/2326-6066.CIR-13-0200
60. Vreeland T. J., Clifton G. T., Herbert G. S., Hale D. F., Jackson D. O. [et al.]. Gaining ground on a cure through synergy: combining checkpoint inhibitors with cancer vaccines. Exp. Rev. Clin. Immun. 2016;12(12):1347-1357. https://doi.org/10.1080/1744666X.2016.1202114
61. da Silveira Nogueira Lima J. P., Georgieva M., Haaland B., de Lima Lopes G. A systematic review and network meta- analysis of immunotherapy and targeted therapy for advanced melanoma. Cancer Med. 2017;6(6):1143-1153. https://doi.org/10.1002/cam4.1001

Ключевые слова: дендритные клетки, иммунотерапия, злокачественные новообразования, меланома


Учредители:
Ставропольская государственная медицинская академия
Государственный научно-исследовательский институт курортологии
Пятигорская государственная фармацевтическая академия