logo
Медицинский вестник
Северного Кавказа
Научно-практический журнал
Зарегистрирован в Федеральной службе
по надзору за соблюдением законодательства
в сфере массовых коммуникаций
и охране культурного наследия
ПИ №ФС77-26521 от 7 декабря 2006 года
ISSN 2073-8137
rus
русский
eng
english

Поиск по сайту




Адрес редакции
355017, Ставрополь, улица Мира, 310.

Телефоны
(8652) 35-25-11, 35-32-29.

E-mail
medvestnik@stgmu.ru

Рейтинг@Mail.ru

Астроциты: роль в генезе психической депрессии и действии антидепрессивных средств

[Обзор]
Арушанян Эдуард Бениаминович;

Астроциты, которые являются важной частью нейроглии головного мозга, по современным данным, контролируют многие аспекты деятельности нервных клеток. Как свидетельствует учёт ряда астроцитарных маркёров в эксперименте и клинике, нарушение их нейротропных свойств аккомпанирует некоторым видам психопатологии, в том числе психической депрессии. Ограничение этих сдвигов может быть частью специфической активности антидепрессивных средств.

Скачать

Список литературы:
1. Oberheim N. A., Goldman S. A., Nedergaard M. Heterogenity of astrocytic form and function. Methods Mol. Biol. 2012;814:23-45.
2. Abbott N. J. Dynamics of CNS barriers: evolution, differentiation, and modulation. Cell Mol. Neurobiol. 2005;25:523. https://doi.org/10.1007/s10571-004-1374-y
3. Sofroniew M. Y., Vinters H. V. Astrocytes: biology and pathology. Acta Neuropathol. 2010;119:730. https://doi.org/10.1007/s00401-009-0619-8
4. Perea G., Navarrete M., Araque A. Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci. 2009;32:421-431. https://doi.org/10.1016/j.tins.2009.05.001
5. Pirttimaki T. M., Parri H. R. Astrocyte plasticity: implications for synaptic and neuronal activity. Neuroscientist. 2013;19:604-615. https://doi.org/10.1177/1073858413504999
6. Dienel G. A. Astrocytes energetics during excitatory neurotransmission: What are contributions of glutamate oxidation and glycolysis. Neurochem. Int. 2013;63:244-258. https://doi.org/10.1016/j.neuint.2013.06.015
7. Karki P., Smith K., Johnson J. Genetic dys-regulation of astrocytic glutamate transporter EAAT2 and its implications in neurological disorders and manganese toxicity Neurochem. Res. 2015;40:380-388. https://doi.org/10.1007/s11064-014-1391-2
8. Ding S., Wang X., Zhuge W. Dopamine induces glutamate accumulation in astrocytes to disrupt neuronal function leading to pathogenesis of minimal hepatic encephaloipathy. Neuroscience. 2017;28:306-317. https://doi.org/10.1016/j.neuroscience.2017.09.040
9. Jennings A., Tyunikova O., Bard L. Dopamine elevates and lowers astroglial Ca2+ through distinct pathways depending on local synaptic circuitry. Glia. 2017:65(3):447-459. https://doi.org/10.1002/glia.23103
10. Frizzo M. E. Can a selective reuptake inhibitor act as a glutamatergic modulator 7. Curr. Ther. Res. Clin. Exper. 2017;87:912. https://doi.org/10.1016/j.curtheres.2017.07.001
11. Gao V., Suzuki A., Magistretti P. P. Astrocytic beta2-adrenergic receptors mediate hippocampal long-term memory consolidation. Proc. Nat. Acad. Sci. USA 2016;113;8526-8531. https://doi.org/10.1073/pnas.1605063113
12. Luellen B. A., Miller D. N., Chisnell A. C. Neuronal and astroglial responses to the serotonin and norepinephrine neurotoxin: 1-methyl-4-(2-aminophenyl)-1,2,3,6-tetrahydropyridine. J. Pharmacol. Exp. Ther. 2003;307:923-931. https://doi.org/10.1124/jpet.103.055749
13. Middeldorp J., Hol E. M. GRAP in health and disiease. Progr. Neurobiol. 2011;93:421-443. https://doi.org/10.1016/j.pneurobio.2011.01.005
14. Burda J. E., Sofroniew M. V. Reactive gliosis and the multicellular response to CNS damage and disease. Neuron. 2014;61:229-248. https://doi.org/10.1016/j.neuron.2013.12.034
15. Czen B., Fuchs E., Flugge G. Altered glial plasticity in animal models for mood disorders. Curr. Drug Targets. 2013;14:1249-1261. https://doi.org/10.2174/1389450111314110005
16. Rajkowska G., Stockmeier C. A. Astrocyte pathology in major depressive disorder: insights from postmortem brain tissue. Curr. Drug Targets. 2013;14:1225-1236. https://doi.org/10.2174/13894501113149990156
17. Davis S., Thomas A., Perry R. Glial fibrillary acidic protein in late life major depressive disorder: an immunocytochemical study. J. Neurol. Neurosurg. Psychiatry. 2002;73:556-560. https://doi.org/10.1136/jnnp.73.5.556
18. Shibasaki K., Hosoi N., Kaneke R. Glycine release from astrocytes via functional reversal of GlyT1. J. Neurochem. 2017;140:395-403.
19. Banasr M., Chowdhury G. M., Terwilliger R. Glial pathology in an animal model of depression: a reversal of stress-induced cellular, metabolic and behavioral deficits by the glutamate-modulating drug riluzole. Mol. Psychiatry. 2010;15:501-511. https://doi.org/10.1038/mp.2008.106
20. Prickaerts J., De Vry J., Boere J. Differential BDNF responses of triple versus dual reuptake inhibition in neuronal and astrocytoma cells as well as in rat hippocampus and prefrontal cortex. Neurosci. 2012;48:167-175. https://doi.org/10.1007/s12031-012-9802-9
21. Quesseveur G., David D. J., Gaillard M. C. BDNF over expression in mouse hippocampal astrocytes promotes local neurogenesis and elicits anxiolytic-like activities. Transl. Psychiatry. 2013;30:201-210. https://doi.org/10.2174/13894501113149990209
22. Yu H., Chen Z. Y. The role of BDNF in depression on the basis of its location in the neural circuitry. Acta Pharmacol. Sin. 2011;32:311. https://doi.org/10.1038/aps.2010.184
23. Schroeter M. L., Steiner J., Mueller K. Glial pathology is modified by age in mood disorders – a systematic meta-analysis of serum S100B in vivo studies. J. Affect. Disord. 2011;134:32-38. https://doi.org/10.1016/j.jad.2010.11.008
24. Yang K., Xia G. R., Hu Y. Q. The effects of gender and numbers of depressive episodes on serum S100B levels in patients with major depression. J. Neural. Transm. 2008;115:1687-1694. https://doi.org/10.1007/s00702-008-0130-8
25. Kong H., Sha L. L., Fan Y. Requirement of AQP4 for antidepressive efficiency of fluoxetine: implication in adult hippocampal neurogenesis. Neuropsychopharmacology. 2009;34:1263-1276. https://doi.org/10.1038/npp.2008.185
26. Szu J. I., Binder D. K. The role of astrocytic aquaporin-4 in synaptic plasticity and learning and memory. Front. Integr. Neurosci. 2016;10:323-331. https://doi.org/10.3389/fnint.2016.00008
27. Chowdhury G. M., Zhang J., Thonas M. Transiently increased glutamate cycling in rat PFC is associated with rapid onset of antidepressant-like effects. Mol. Psychiatry 2017;22:120-126. https://doi.org/10.1038/mp.2016.34
28. Ardalan M. Rapid antidepressant effect of ketamine correlates with astroglial plasticity in the hippocampus. Br. J. Parmacol. 2017;174:483-492. https://doi.org/10.1111/bph.13714
29. Cabras S., Saba F., Reali C. Antidepressant imipramine induces human astrocytes to differentiate into cells with neuronal phenotype. Int. J. Neuropsychopharmacol. 2010;13:603-615. https://doi.org/10.1017/s1461145710000210
30. Domin H., Szewczyk B., Wozniak M. Antidepressant-like effect of the mGluR5 antagonist MTEP in an astroglial degeneration model of depression. Behav. Brain. Res. 2014;273:23-33. https://doi.org/10.1016/j.bbr.2014.07.019
31. Cho W., Brenner M., Peters N. Drug screening to identify suppressors of GFAP expression. Hum. Mol. Genet. 2010;19:3169-3178. https://doi.org/10.1093/hmg/ddq227
32. Tsai S. J., Hong C. L., Liou Y. J. Brain-derived neurotrophic factor and antidepressive action: another piece of evidence from pharmacogenetics. Pharmacogenomics. 2008;9:1353-1356. https://doi.org/10.2217/14622416.9.9.1353
33. Brunoni A. R., Machado-Viera R., Zarate C. A. BDNF plasma levels after antidepressant treatment with sertraline and transcranial direst current stimulation: results from a factorial, randomized, sham-controlled trial. Eur. Neuropsychopharmacology. 2014;24:1144-1151. https://doi.org/10.1016/j.euroneuro.2014.03.006
34. Quesseveur G., Gardier A. M., Guilard B. P. The monoaminergic tripartite synapses: a putative target for currently available antidepressant drugs. Curr. Drug Targets. 2013;14:1277-1294. https://doi.org/10.2174/13894501113149990209
35. Takano K., Yamasaki H., Kawabe K. Imipramine induces brain-derived neurotrophic factor mRNA expression in cultured astrocytes. J. Pharmacol. Sci. 2012;120:176-186. https://doi.org/10.1254/jphs.12039fp
36. Kajitani N., Hisaoka-Nakashima K., Morioka K. Antidepressant action astrocytes leading to an increase in the expression of neurotrophic/growth factors: differential regulation of FGF-2 by noradrenaline. PLoS One. 2012;7(12):e51197. https://doi.org/10.1371/journal.pone.0051197
37. Arott V., Peters M., Erfurth A. S 100B and response to treatment in major depression: a pilot study. Eur. Neuropsychopharmacol. 2003;13:235-239. https://doi.org/10.1016/s0924-977x(03)00016-6
38. Quesseveur G., Portal B., Basile J. A. Attenuated levels of hippocampal connexin 43 and its phosphorylation correlate with antidepressant- and anxiolytic-like activities in mice. Front. Cell Neurosci. 2015;22:490-498. https://doi.org/10.3389/fncel.2015.00490
39. Di Benedetto B., Malik V. A., Begum S. Fluoxetine requires the end feet protein aquaporin-4 to enhance plasticity of astrocyte processes. Front. Cell Neurosci. 2016;10:338-346. https://doi.org/10.3389/fncel.2016.00008
40. Kong H., Zeng X. N., Fan Y. Aquqporin-4 knockout exacerbates corticosteron-induced depression by inhibiting astrocyte function and hippocampal neurogenesis. CNS Neurosci. Ther. 2014;20:391-402. https://doi.org/10.1111/cns.12222
41. Chen L., Wang X., Lin Z. X. Preventive effects of ginseng total saponins on chronic corticosterone-induced impairment in astrocytes structural plasticity and hippocampal atrophy. Phytother. Res. 2017;31:1341-1348. https://doi.org/10.1002/ptr.5859
42. Xia C. Y., Chu S. F., Zhang Ginsenoside S. Rg1 alleviates corticosterone-induced dysfunction of gap junctions in astrocytes. J. Ethnopharmacol. 2017;208: 207-213.

Ключевые слова: астроциты, психическая депрессия, антидепрессанты


Учредители:
Ставропольская государственная медицинская академия
Государственный научно-исследовательский институт курортологии
Пятигорская государственная фармацевтическая академия