logo
Медицинский вестник
Северного Кавказа
Научно-практический журнал
Зарегистрирован в Федеральной службе
по надзору за соблюдением законодательства
в сфере массовых коммуникаций
и охране культурного наследия
ПИ №ФС77-26521 от 7 декабря 2006 года
ISSN 2073-8137
rus
русский
eng
english

Поиск по сайту




Адрес редакции
355017, Ставрополь, улица Мира, 310.

Телефоны
(8652) 35-25-11, 35-32-29.

E-mail
medvestnik@stgmu.ru

Рейтинг@Mail.ru

Генетика и эпигенетика ожирения – порочные круги патогенеза и возможности для коррекции

[Обзоры]
Афанасьева Галина Александровна; Гафурова Галия Вялитовна; Щетинина Елизавета Евгеньевна; Сирак Сергей Владимирович; Щетинин Евгений Вячеславович;

В обзоре обобщена актуальная информация о роли генетических и эпигенетических маркеров в формировании и предрасположенности к развитию избыточной массы тела и осложнений ожирения. Наряду с индивидуальным генетическим профилем, эпигенетические модификации ДНК пациентов, вызванные действием факторов окружающей среды (отсутствие физической активности, чрезмерное потребление калорий, хронический стресс и др.), рассматриваются как существенные условия для формирования порочных кругов патогенеза. Набор избыточной массы тела запускает новые эпигенетические модификации, которые, в свою очередь, провоцируют появление тяжелых осложнений и хронических патологических процессов (инсулинорезистентность, сахарный диабет, сердечно-сосудистые осложнения, опухолевая трансформация и др.), существенно осложняющих прогноз пациентов. С другой стороны, понимание механизмов изменений эпигенома открывает новые пути профилактики и лечения ожирения и его последствий, поскольку описаны варианты обратимости эпигенетических модификаций при изменении образа жизни, питания и использовании некоторых групп лекарственных препаратов. Эпигенетические исследования позволяют реализовать принципы персонализированной медицины, достоверно определять индивидуальную предрасположенность пациентов к ожирению и прогнозы для возможности коррекции.

Скачать

Список литературы:
1. NCD Risk Factor Collaboration. Worldwide trends in underweight and obesity from 1990 to 2022: a pooled analysis of 3663 population-representative studies with 222 million children, adolescents, and adults. Lancet. 2024;403(10431):1027-1050. https://doi.org/10.1016/S0140-6736(23)02750-2
2. Wu Y., Duan H., Tian X., Xu C., Wang W. [et al.]. Gene- tics of obesity traits: A bivariate genome-wide association analysis. Front. Genet. 2018;9:179. https://doi.org/10.3389/fgene.2018.00179
3. Lin X., Li H. Obesity: epidemiology, pathophysiology, and therapeutics. Front. Endocrinol. 2021;12:706978. https://doi.org/10.3389/fendo.2021.706978
4. Rosen E. D., Kaestner K. H., Natarajan R., Patti M. E., Sallari R. [et al.]. Epigenetics and epigenomics: implications for diabetes and obesity. Diabetes. 2018;67(10):1923-1931. https://doi.org/10.2337/db18-0537
5. King S. E., Skinner M. K. Epigenetic Transgenerational Inheritance of Obesity Susceptibility. Trends Endocrinol. Metab. 2020;31(7):478-494. https://doi.org/10.1016/j.tem.2020.02.009
6. Jaenisch R., Bird A. Epigenetic regulation of gene expression: how the genome integrates Intrinsic and environmental signals. Nat. Genet. 2003;33(Suppl):245-254. https://doi.org/10.1038/ng1089
7. Wu Y. L., Lin Z. J., Li C. C., Lin X., Shan S. K. [et al.]. Epigenetic regulation in metabolic diseases: mechanisms and advances in clinical study. Sig. Transduct. Target Ther. 2023;8:98. https://doi.org/10.1038/s41392-023-01333-7
8. Sherwood W. B., Bion V., Lockett G. A., Ziyab A. H., Soto-Ramírez N. [et al.]. Duration of breastfeeding is associated with leptin (LEP) DNA methylation profiles and BMI in 10-year-old children. Clin. Epigenet. 2019;11(1):128. https://doi.org/10.1186/s13148-019-0727-9
9. Ling C., Rönn T. Epigenetics in human obesity and type 2 diabetes. Cell. Metab. 2019;29(5):1028-1044. https://doi.org/10.1016/j.cmet.2019.03.009
10. Sayols-Baixeras S., Subirana I., Fernández-Sanlés A., Sentí M., Lluís-Ganella C. [et al.]. DNA methylation and obesity traits: An epigenome-wide association study. The REGICOR study. Epigenetics. 2017;12:909-916. https://doi.org/10.1080/15592294.2017.1363951
11. Wahl S., Drong A., Lehne B., Loh M., Scott W. R. [et al.]. Epigenome-wide association study of body mass index, and the adverse outcomes of adiposity. Nature. 2017;541(7635):81-86. https://doi.org/10.1038/nature20784
12. Cricrí D., Coppi L., Pedretti S., Mitro N., Caruso D. [et al.]. Histone deacetylase 3 regulates adipocyte phenotype at early stages of differentiation. Int. J. Mol. Sci. 2021;22:9300. https://doi.org/10.3390/ijms22179300
13. Sun L., Evsikova C. M., Bian K., Achille A., Telles E. [et al.]. Programming and regulation of metabolic homeostasis by HDAC11. EBioMedicine. 2018;33:157-168. https://doi.org/10.1016/j.ebiom.2018.06.025
14. Lieber A. D., Beier U. H., Xiao H., Wilkins B. J., Jiao J. [et al.]. Loss of HDAC6 alters gut microbiota and worsens obesity. Faseb. J. 2019;33:1098-1109. https://doi.org/10.1096/fj.201701586R
15. Zhang D., Yamaguchi S., Zhang X., Yang B., Kurooka N. [et al.]. Upregulation of miR342 in diet-induced obesity mouse and the hypothalamic appetite control. Front. Endocrinol. 2021;12:727915. https://doi.org/10.3389/fendo.2021.727915
16. Gao Y., Li J., Zhang Z., Zhang R., Pollock A., Sun T. MicroRNA miR-7 and miR-17-92 in the arcuate nucleus of mouse hypothalamus regulate sex-specific diet-induced obesity. Mol. Neurobiol. 2019;56:7508-7521. https://doi.org/10.1007/s12035-019-1618-y
17. Ying W., Gao H., Gomes Dos Reis F. C., Bandyopadhyay G., Ofrecio J. M. [et al.]. MiR-690, an exosomal-derived miRNA from M2-polarized macrophages, improves insulin sensitivity in obese mice. Cell. Metab. 2021;33:781-790.e5. https://doi.org/10.1016/j.cmet.2020.12.019
18. Pan Y., Hui X., Hoo R. L. C., Ye D., Chan C. Y. C. [et al.]. Adipocyte-secreted exosomal microRNA-34a inhibits M2 macrophage polarization to promote obesity-induced adipose inflammation. J. Clin. Invest. 2017;129:834-849. https://doi.org/10.1172/JCI123069
19. Li K., Wu Y., Yang H., Hong P., Fang X. [et al.]. H19/miR-30a/C8orf4 axis modulates the adipogenic differentiation process in human adipose tissue-derived mesenchymal stem cells. J. Cell Physiol. 2019;234:20925-20934. https://doi.org/10.1002/jcp.28697
20. Zhang L., Ma J., Pan X., Zhang M., Huang W. [et al.]. LncRNA MIR99AHG enhances adipocyte differentiation by targeting miR-29b-3p to upregulate PPARγ. Mol. Cell Endocrinol. 2022;550:111648. https://doi.org/10.1016/j.mce.2022.111648
21. Wu C., Fang S., Zhang H., Li X., Du Y. [et al.]. Long noncoding RNA XIST regulates brown preadipocytes differentiation and combats high-fat diet induced obesity by targe-ting C/EBPα. Mol. Med. 2022;28(1):6. https://doi.org/10.1186/s10020-022-00434-3
22. Bollepalli S., Kaye S., Heinonen S., Kaprio J., Rissanen A. [et al.]. Subcutaneous adipose tissue gene expression and DNA methylation respond to both short- and longterm weight loss. Int. J. Obes. 2018;42:412-423. https://doi.org/10.1038/ijo.2017.245
23. Keller M., Meir A. Y., Bernhart S. H., Gepner Y., Shelef I. [et al.]. DNA methylation signature in blood mirrors successful weight-loss during lifestyle interventions: the CEN-TRAL trial. Genome Med. 2020;12:97. https://doi.org/10.1186/s13073-020-00794-7
24. Perfilyev A., Dahlman I., Gillberg L., Rosqvist F., Iggman D. [et al.]. Impact of polyunsaturated and saturated fat overfeeding on the DNA-methylation pattern in human adipose tissue: a randomized controlled trial. Am. J. Clin. Nutr. 2017;105:991-1000. https://doi.org/10.3945/ajcn.116.143164
25. Capelo-Diz A., Lachiondo-Ortega S., Fernández-Ramos D., Cañas-Martín J., Goikoetxea-Usandizaga N. [et al.]. Hepatic levels of S-adenosylmethionine regulate the adaptive response to fasting. Cell. Metab. 2023;35(8):1373-1389.e8. https://doi.org/10.1016/j.cmet.2023.07.002
26. Roberti A., Fernández A. F., Fraga M. F. Nicotinamide N-methyltransferase: At the crossroads between cellular metabolism and epigenetic regulation. Mol. Metab. 2021;45:101165. https://doi.org/10.1016/j.molmet.2021.101165
27. Sarkar S., Deiter C., Kyle J. E., Guney M. A., Sarbaugh D. Regulation of β-cell death by ADP-ribosylhydrolase ARH3 via lipid signaling in insulitis. Cell. Commun. Signal. 2024;22(1):141. https://doi.org/10.1186/s12964-023-01437-1
28. Šrámek J., Němcová-Fürstová V., Kovář J. Molecular mechanisms of apoptosis induction and Its regulation by fatty acids in pancreatic beta-cells. Int. J. Mol. Sci. 2021;22(8):4285. https://doi.org/10.3390/ijms22084285
29. Gillberg L., Jacobsen S. C., Rönn T., Brøns C., Vaag A. PPARGC1A DNA methylation in subcutaneous adipose tissue in low birth weight subjects-impact of 5 days of highfat overfeeding. Metabolism. 2014;63(2):263-271. https://doi.org/10.1016/j.metabol.2013.10.003
30. Jacobsen S. C., Gillberg L., Bork-Jensen J., Ribel-Madsen R., Lara E. [et al.]. Young men with low birthweight exhibit decreased plasticity of genome-wide muscle DNA methylation by high-fat overfeeding. Diabetologia. 2014;57(6):1154-1158. https://doi.org/10.1007/s00125-014-3198-8
31. Tuttolomondo A., Simonetta I., Daidone M., Mogavero A., Ortello A., Pinto A. Metabolic and vascular effect of the mediterranean diet. Int. J. Mol. Sci. 2019;20(19):4716. https://doi.org/10.3390/ijms20194716
32. Kenanoglu S., Gokce N., Akalin H., Ergoren M. C., Beccari T. [et al.]. Implication of the Mediterranean diet on the human epigenome. J. Prev. Med. Hyg. 2022;63(2Suppl3):E44-E55. https://doi.org/10.15167/2421-4248/jpmh2022.63.2S3.2746
33. Hoffmann A., Meir A. Y., Hagemann T., Czechowski P., Müller L. A polyphenol-rich green Mediterranean diet enhances epigenetic regulatory potential: the DIRECT PLUS randomized controlled trial. Metabolism. 2023;145:155594. https://doi.org/10.1016/j.metabol.2023.155594
34. Küpers L. K., Fernández-Barrés S., Nounu A., Friedman C., Fore R. Mediterranean diet in pregnancy and newborn DNA methylation: a meta-analysis in the PACE Consortium. Epigenetics. 2022;17(11):1419-1431. https://doi.org/10.1080/15592294.2022.2038412
35. Ly A., Hoyt L., Crowell J., Kim Y. I. Folate and DNA methylation. Antioxid. Redox. Signal. 2012;17(2):302-326. https://doi.org/10.1089/ars.2012.4554
36. Li W., Tang R., Ma F., Ouyang S., Liu Z., Wu J. Folic acid supplementation alters the DNA methylation profile and improves insulin resistance in high-fat-diet-fed mice. J. Nutr. Biochem. 2018;59:76-83. https://doi.org/10.1016/j.jnutbio.2018.05.010
37. Frederick A. M., Guo C., Meyer A., Yan L., Schneider S. S., Liu Z. The influence of obesity on folate status, DNA and cancer-related gene expression in normal breast tissues from premenopausal women. Epigenetics. 2021;16(4):458-467. https://doi.org/10.1080/15592294.2020.1805687
38. Zhang Q., Zhang C., Wang H., Ma Z., Liu D. [et al.]. Intermittent fasting versus continuous calorie restriction: which Is better for weight loss? Nutrients. 2022;14(9):1781. https://doi.org/10.3390/nu14091781
39. Liu D., Huang Y., Huang C., Yang S., Wei X. [et al.]. Calorie restriction with or without time-restricted eating in weight loss. N. Engl. J. Med. 2022;386(16):1495-1504. https://doi.org/10.1056/NEJMoa2114833
40. Zheng D., Hong X., He X., Lin J., Fan S. [et al.]. Intermittent fasting improves glucose homeostasis not entirely dependent on caloric restriction in db/db male mice. Diabetes. 2024:db230157. https://doi.org/10.2337/db23-0157
41. Saeed M., Ali M., Zehra T., Haider Zaidi S. A., Tariq R. Intermittent fasting: A user-friendly method for type 2 diabetes mellitus. Cureus. 2021;13(11):e19348. https://doi.org/10.7759/cureus.19348
42. DiNicolantonio J. J., McCarty M. F., O’Keefe J. H. Nutraceutical activation of Sirt1: a review. Open Heart. 2022;9(2):e002171. https://doi.org/10.1136/openhrt-2022-002171
43. Banerjee S., Ghoshal S., Stevens J. R., McCommis K. S., Gao S. [et al.]. Hepatocyte expression of the micropeptide adropin regulates the liver fasting response and is enhanced by caloric restriction. J. Biol. Chem. 2020;295(40):13753-13768. https://doi.org/10.1074/jbc.RA120.014381
44. Brocchi A., Rebelos E., Dardano A., Mantuano M., Daniele G. Effects of intermittent fasting on brain metabolism. Nutrients. 2022;14(6):1275. https://doi.org/10.3390/nu14061275
45. Tao Z., Aslam H., Parke J., Sanchez M., Cheng Z. Mechanisms of autophagic responses to altered nutritional status. J. Nutr. Biochem. 2022;103:108955. https://doi.org/10.1016/j.jnutbio.2022.108955
46. Ma Y. N., Jiang X., Tang W., Song P. Influence of intermittent fasting on autophagy in the liver. Biosci. Trends. 2023;17(5):335-355. https://doi.org/10.5582/bst.2023.0120
47. Hu L. F. Epigenetic regulation of autophagy. Adv. Exp. Med. Biol. 2019;1206:221-236. https://doi.org/10.1007/978-981-15-0602-4_11
48. Yu Y. S., Kim H., Kim K. I., Baek S. H. Epigenetic regulation of autophagy by histone-modifying enzymes under nutrient stress. Cell Death Differ. 2023;30(6):1430-1436. https://doi.org/10.1038/s41418-023-01154-9
49. Shin H. J., Kim H., Oh S., Lee J. G., Kee M. [et al.]. AMPK-SKP2-CARM1 signalling cascade in transcriptional regulation of autophagy. Nature. 2016;534(7608):553-557. https://doi.org/10.1038/nature18014
50. González-Rodríguez P., Füllgrabe J., Joseph B. The hunger strikes back: an epigenetic memory for autophagy. Cell Death Differ. 2023;30(6):1404-1415. https://doi.org/10.1038/s41418-023-01159-4
51. Shu F., Xiao H., Li Q. N., Ren X. S., Liu Z. G. Epigenetic and post-translational modifications in autophagy: biological functions and therapeutic targets. Signal Transduct. Target. Ther. 2023;8(1):32. https://doi.org/10.1038/s41392-022-01300-8
52. Larkin B. P., Nguyen L. T., Hou M., Glastras S. J., Chen H. [et al.]. Low-dose hydralazine reduces albuminuria and glomerulosclerosis in a mouse model of obesity-related chronic kidney disease. Diabetes Obes. Metab. 2022;24(10):1939-1949. https://doi.org/10.1111/dom.14778
53. Lee B. H., Yegnasubramanian S., Lin X., Nelson W. G. Procainamide is a specific inhibitor of DNA methyltrans- ferase 1. J. Biol. Chem. 2005;280(49):40749-40756. https://doi.org/10.1074/jbc.M505593200
54. Wang X., Cao Q., Yu L., Shi H., Xue B., Shi H. Epigenetic regulation of macrophage polarization and inflammation by DNA methylation in obesity. JCI Insight. 2016;1(19):e87748. https://doi.org/10.1172/jci.insight.87748
55. Li Y. Y., Tang D., Du Y. L., Cao C. Y., Nie Y.Q. [et al.]. Fatty liver mediated by peroxisome proliferator-activated receptor-α DNA methylation can be reversed by a methylation inhibitor and curcumin. J. Dig. Dis. 2018;19(7):421-430. https://doi.org/10.1111/1751-2980.12610
56. Афанасьева Г. А., фисун А. В., Щетинин Е. В. Эпигенетические механизмы при эпилепсии. Смена парадигмы в профилактике приступов и лечении. Медицинский вестник Северного Кавказа. 2022;17(4):439-444. https://doi.org/10.14300/mnnc.2022.17107
57. Khan S., Jena G. Valproic acid improves glucose homeostasis by increasing beta-cell proliferation, function, and reducing its apoptosis through HDAC inhibition in juvenile diabetic rat. J. Biochem Mol. Toxicol. 2016;30(9):438-446. https://doi.org/10.1002/jbt.21807
58. Lin J. R., Huang S. H., Wu C. H., Chen Y. W., Hong Z. J. [et al.]. Valproic acid suppresses autoimmune recurrence and allograft rejection in islet transplantation through induction of the differentiation of regulatory T cells and can be used in cell therapy for type 1 diabetes. Pharmaceuticals. 2021;14(5):475. https://doi.org/10.3390/ph14050475
59. Ren B. C., Zhang Y. F., Liu S. S., Cheng X. J., Yang X. [et al.]. Curcumin alleviates oxidative stress and inhibits apoptosis in diabetic cardiomyopathy via Sirt1-Foxo1 and PI3K-Akt signalling pathways. J. Cell Mol. Med. 2020;24(21):12355-12367. https://doi.org/10.1111/jcmm.15725
60. Tikoo K., Meena R. L., Kabra D. G., Gaikwad A. B. Change in post-translational modifications of histone H3, heat-shock protein-27 and MAP kinase p38 expression by curcumin in streptozotocin-induced type I diabetic nephropathy. Br. J. Pharm. 2008;153(6):1225-1231. https://doi.org/10.1038/sj.bjp.0707666
61. Peng J., Ramatchandirin B., Wang Y., Pearah A., Namachivayam K. [et al.]. The P300 acetyltransferase inhibitor C646 promotes membrane translocation of insulin receptor protein substrate and interaction with the insulin receptor. J. Biol. Chem. 2022;298(3):101621. https://doi.org/10.1016/j.jbc.2022.101621
62. Bagul P. K., Deepthi N., Sultana R., Banerjee S. K. Resveratrol ameliorates cardiac oxidative stress in diabetes through deacetylation of NFkB-p65 and histone 3. J. Nutr. Biochem. 2015;26(11):1298-1307. https://doi.org/10.1016/j.jnutbio.2015.06.006
63. Fang W. J., Wang C. J., He Y., Zhou Y. L., Peng X. D., Liu S. K. Resveratrol alleviates diabetic cardiomyopathy in rats by improving mitochondrial function through PGC-1α deacetylation. Acta Pharm. Sin. 2018;39(1):59-73. https://doi.org/10.1038/aps.2017.50
64. Wang X., Meng L., Zhao L., Wang Z., Liu H. [et al.]. Resveratrol ameliorates hyperglycemia-induced renal tubular oxidative stress damage via modulating the SIRT1/FOXO3a pathway. Diabetes Res. Clin. Pr. 2017;126:172-181. https://doi.org/10.1016/j.diabres.2016.12.005
65. Jiang Y., Luo W., Wang B., Wang X., Gong P. [et al.]. Resveratrol promotes osteogenesis via activating SIRT1/FoxO1 pathway in osteoporosis mice. Life Sci. 2020:246:117422. https://doi.org/10.1016/j.lfs.2020.117422

Ключевые слова: ожирение, эпигенетика, метилирование ДНК, ацетилирование гистонов, диета, голодание


Учредители:
Ставропольская государственная медицинская академия
Государственный научно-исследовательский институт курортологии
Пятигорская государственная фармацевтическая академия