Поиск по сайту
Адрес редакции
355017, Ставрополь, улица Мира, 310.
Телефоны
(8652) 35-25-11, 35-32-29.
E-mail
medvestnik@stgmu.ru
Журнал включён в Перечень ведущих рецензируемых научных журналов и изданий, в которых должны быть опубликованы результаты диссертаций на соискание учёной степени кандидата и доктора наук (решение Президиума ВАК Минобрнауки РФ №6/6, февраль 2010).
Журнал включён в Реферативный журнал и Базы данных ВИНИТИ РАН и зарегистрирован в Научной электронной библиотеке в базе данных Российского индекса научного цитирования на основании сублицензионного договора № 07-04/09-14 от 25 марта 2009 года.
Журнал индексируется: БД SCOPUS, Ulrich's International Periodicals Directory.
[Обзоры]
Гордиенко Иван Иванович; Цап Наталья Александровна; Борисов Семён Александрович; Черный Степан Петрович; Марченко Екатерина Сергеевна; Антониади Юрий Валерьевич;
Проведен анализ литературных данных по использованию биорезорбируемых материалов в медицинской практике и в травматологии детского возраста в частности. Рассмотрены преимущества и недостатки самого используемого в настоящее время биорезорбируемого материала – полилактида и его модификации (PLA, PGA, PLGA, PCL, PHB, PHBV, PHEMA), а также текущие мировые исследования в области биорезорбируемых металлов на основе магния (Mg) и цинка (Zn). Приведены сравнительные характеристики физических и биорезорбционных свойств различных материалов.
Список литературы:
1. Murry C. J. L., Barber R. M., Foreman K. J. Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990–2013: quantifying the epidemiological transition. The Lancet. 2015;386:743-800. https://doi.org/10.1016/S0140-6736(15)61340-X
2. Haagsma J. A., James S. L., Castle C. D., Dingels Z. V., Fox J. T. Burden of injury along the development spectrum: associations between the Socio-demographic Index and disability-adjusted life year estimates from the Global Burden of Disease Study 2017. Injury Prevention. 2020;26:12-26. https://doi.org/10.1136/injuryprev-2019-043296
3. Bilge O., Dündar Z. D., Atılgan N., Yaka H., Kekeç A. F. The epidemiology of adult fractures according to the AO/ OTA fracture classification. Ulus Travma Acil Cerrahi Derg. 2022;28(2):209-216. https://doi.org/10.14744/tjtes.2020.26374
4. Aydin E., Hasirci V. Biodegradable Hard Tissue Implants. Journal of Siberian Federal University. 2010;3:3-17.
5. Лесняк О. М., Баранова И. А., Беловак К. Ю., Гладкова Е. Н., Евстигнеева Л. П. [и др.]. Остеопороз в Российской Федерации: эпидемиология, медико-социальные и экономические аспекты (обзор литературы). Травматология и ортопедия России. 2018;24(1):155-168. https://doi.org/10.21823/2311-2905-2018-24-1-155-168
6. Eichler K., Höglinger M., Meier F., Knöfler F., ScholzOdermatt S. M. [et al.]. Impact of osteosynthesis in fracture care: a cost comparison study. J. Comp. Eff. Res. 2020;9(7):483-496. https://doi.org/10.2217/cer-2019-0194
7. Якимов Л. А., Слиняков Л. Ю., Бобров Д. С., Калинский Е. Б., Ляхов Е. В., Лосик А. Л. Биодеградируемые импланты. Становление и развитие. Преимущества и недостатки (обзор литературы). Кафедра травматологии и ортопедии. 2017;1(21):44-49.
8. Marchenko E. S., Dubovikov K. M., Baigonakova G. A., Gordienko I. I., Volinsky A. A. Surface Structure and Properties of Hydroxyapatite Coatings on NiTi Substrates. Coatings. 2023;13:722. https://doi.org/10.3390/coatings13040722
9. Marchenko E. S., Baigonakova G. A., Dubovikov K. M., Kokorev O. V., Gordienko I. I., Chudinova E. A. Properties of Coatings Based on Calcium Phosphate and Their Effect on Cytocompatibility and Bioactivity of Titanium Nickelide. Materials. 2023;16:2581. https://doi.org/10.3390/ma16072581
10. Kiselevsky М. V., Anisimova N. Y., Polotsky B. Е., Martynenko N. S., Lukyanova Е. А. [et al.]. Biodegradable magnesium alloys as promising materials for medical applications. Modern Technologies in Medi. 2019;11(3):146155. https://doi.org/10.17691/stm2019.11.3.18
11. Naseem R., Tzivelekis C., German M. J., Gentile P., Ferreira A. M., Dalgarno K. Strategies for Enhancing Polyester-Based Materials for Bone Fixation Applications. Molecules. 2021;26(4):992. https://doi.org/10.3390/molecules26040992
12. García-Gimeno M., Jarne I. P., Tagarro-Villalba S., Capitán B. A., Aguilar C. C., González-González E. Fatal vascular complication due to metallosis. J. Vasc. Surg. Cases Innov. Tech. 2021;7(2):311314. https://doi.org/10.1016/j.jvscit.2021.03.010
13. Janice C. Y. Liao, Alphonsus K. S. Chong. Pediatric Hand and Wrist Fractures. Clin. Plast. Surg. 2019;46(3):425436. https://doi.org/10.1016/j.cps.2019.02.012
14. Brzeziński M., Basko M. Polylactide-Based Materials: Synthesis and Biomedical Applications. Molecules. 2023;28(3):1386. https://doi.org/10.3390/molecules28031386
15. Kadina Y. A., Razuvaeva E. V., Streltsov D. R., Sedush N. G., Shtykova E. V. [et al.]. Poly(Ethylene glycol)-b-poly(D,L-lactide) nanoparticles as potential carriers for anticancer drug oxaliplatin. Molecules. 2021;26:602. https://doi.org/10.3390/molecules26030602
16. Wulf K., Goblet M., Raggl S., Teske M., Eickner T. [et al.]. PLLA Coating of Active Implants for Dual Drug Release. Molecules. 2022;27:14-17. https://doi.org/10.3390/molecules27041417
17. Pramual S., Lirdprapamongkol K., Atjanasuppat K., Chaisuriya P., Niamsiri N., Svasti J. PLGA-Lipid Hybrid Nanoparticles for Overcoming Paclitaxel Tolerance in Anoikis-Resistant Lung Cancer Cells. Molecules. 2022;27:82-95. https://doi.org/10.3390/molecules27238295
18. Naseem R., Tzivelekis C., German M. J., Gentile P., Ferreira A. M., Dalgarno K. Strategies for Enhancing Po lyester-Based Materials for Bone Fixation Applications. Molecules. 2021;26(4):992. https://doi.org/10.3390/molecules26040992
19. Geddes L., Carson L., Themistou E., Buchanan F. In Vitro Inflammatory Response Evaluation of Pre-Ddegraded Bioresorbable Polymers Used In Trauma Fixation And Tissue Regeneration Applications. Orthop. Proc. 2018;100:62. https://doi.org/10.1302/1358-992X.2018.14.062
20. On S. W., Cho S. W., Byun S. H., Yang B. E. Bioabsorbable Osteofixation Materials for Maxillofacial Bone Surgery: A Review on Polymers and Magnesium-Based Materials. Biomedicines. 2020;8:300. https://doi.org/10.3390/biomedicines8090300
21. Antoniac I., Miculescu M., Manescu V., Stere A., Quan P. H. [et al.]. Magnesium-based alloys used in orthopedic surgery. Materials. 2022;15:11-48. https://doi.org/10.3390/ma15031148
22. Zeng Q., Chen S., Song P., Li H., Zeng X. Enhanced Plasticity and Corrosion Resistance in Mg-Zn-Ca-Cu Amorphous Alloy Composite via Plasma Electrolytic Oxidation Treatment. Metals (Basel). 2022;12:300. https://doi.org/10.3390/met12020300
23. Nowosielski R., Bajorek A., Babilas R. Corrosion behavior of bioresorbable Ca-Mg-Zn bulk metallic glasses. J. Non Cryst. Solids. 2016;447:126-133. https://doi.org/10.1016/j.jnoncrysol.2016.05.037
24. Kania A., Nowosielski R., Gawlas-Mucha A., Babilas R. Mechanical and Corrosion Properties of Mg-Based Alloys with Gd Addition. Materials. 2019;12(11):17-75. https://doi.org/10.3390/ma12111775
25. Atrens A., Song G. L., Liu M., Shi Z., Cao F., Dargusch M. S. Review of recent developments in the field of magnesium corrosion. Adv. Eng. Mater. 2015;17:400-453. https://doi.org/10.1002/adem.201400434
26. Linderov M. L., Afanasyev M. A., Asmolov A. N., Danilov V. A., Merson D. L. Regulation of corrosion damage of magnesium alloys through the use of vacuum zirconium coatings. Lett. Mater. 2021;11(3):357-362. https://doi.org/10.22226/2410-3535-2021-3-357-362
27. Myagkikh P. N., Merson E. D., Poluyanov V. A., Begun M. E., Merson D. L. Polymeric coatings and features of the preliminary surface treatment of biodegradable magnesium alloys: a review. Materials. Technologies. Design. 2023;5(11):71-82. https://doi.org/10.54708/26587572_2023_511171
28. Gao Y., Wang L., Gu X., Chu Z., Guo M., Fan Y. A quantitative study on magnesium alloy stent biodegradation. J. Biomech. 2018;74:98-105. https://doi.org/10.1016/j.jbiomech.2018.04.027
29. Johnston S., Dargusch M., Atrens A. Building towards a standardised approach to biocorrosion studies: a review of factors influencing Mg corrosion in vitro pertinent to in vivo corrosion. Science China Materials. 2018;61(4):475-500. https://doi.org/10.1007/s40843-017-9173-7
30. Koo Y., Jang Y., Yun Y. A study of long-term static load on degradation and mechanical integrity of Mg alloys-based biodegradable metals. Mater. Sci. Eng. B: Solid – State Mater. Adv. Technol. 2017;219:45-54. https://doi.org/10.1016/j.mseb.2017.02.009
31. Zhang S., Bi Y., Li J., Wang Z., Yan J. [et al.]. Biodegradation behavior of magnesium and ZK60 alloy in artificial urine and rat models. Bioact. Mater. 2017;2(2):53-62. https://doi.org/10.1016/j.bioactmat.2017.03.004
32. Marchenko E. S., Shishelova A. A., Butyagin P. I., Gordienko I. I., Khrustalev A. P. [et al.]. Electrolyte exposure time effects on structure, composition and biocompatibility of microarc oxidation coatings on Mg-Ca-Zn alloys. Surf. Coat. Technol. 2023;473:129982. https://doi.org/10.1016/j.surfcoat.2023.129982
33. Jähn K., Saito H., Taipaleenmäki H., Gasser A., Hort N. [et al.]. Intramedullary Mg2Ag nails augment callus formation during fracture healing in mice. Acta Biomater. 2016;36:35- 60. https://doi.org/10.1016/j.actbio.2016.03.041
34. Zhang Y., Xu J., Ruan Y. C., Yu M. K., O’Laughlin M. [et al.]. Implant-derived magnesium induces local neuronal production of CGRP to improve bone-fracture healing in rats. Nat. Med. 2016;22:11-60. https://doi.org/10.1038/nm.4162
35. Myrissa A., Nezha Ahmad A., Lu Y., Martinelli E., Eichler J. [et al.]. In vitro and in vivo comparison of binary Mg alloys and pure Mg. Mater Sci. Eng. C. 2016;61:65-74. https://doi.org/10.1016/j.msec.2015.12.064
36. Grün N. G., Holweg P. L., Donohue N., Klestil T., Weinberg A. M. Resorbable implants in pediatric fracture treatment. Innov. Surg. Sci. 2018;3(2):119-125. https://doi.org/10.1515/iss-2018-0006
37. Li W., Liu X., Zheng Y., Wang W., Qiao W. [et al.]. In vitro and in vivo studies on ultrafine-grained biodegradable pure Mg, Mg-Ca alloy and Mg-Sr alloy processed by highpressure torsion. Biomater. Sci. 2020;8(18):5071-5087. https://doi.org/10.1039/d0bm00805b
38. Hou P., Han P., Zhao C., Wu H., Ni J. [et al.]. Accelerating corrosion of pure magnesium Co-implanted with titanium in vivo. Sci. Rep. 2017;7:19-24. https://doi.org/10.1038/srep41924
39. Kraus T., Fischerauer S., Treichler S., Martinelli E., Eichler J. [et al.]. The influence of biodegradable magnesium implants on the growth plate. Acta Biomater. 2018;66:10- 17. https://doi.org/10.1016/j.actbio.2017.11.031
40. Katarivas G., Goldman J., Aghion E. The Prospects of Zinc as a Structural Material for Biodegradable Implants. A Review Paper. Metals. 2017;7:402. https://doi.org/10.3390/met7100402
41. Wang J., Xia H., Fan X., Wu H., Liao Y., Yuan F. Biodegradable Zn-2Ag-0.04Mg Alloy for Bone Regeneration In Vivo. Mol. Biotechnol. 2022;64(8):928-935. https://doi.org/10.1007/s12033-022-00474-4
42. Lin J., Tong X., Shi Z., Zhang D., Zhang L. [et al.]. A biodegradable Zn-1Cu-0.1Ti alloy with antibacterial properties for orthopedic applications. Acta Biomater. 2020;106:410- 427. https://doi.org/10.1016/j.actbio.2020.02.017
43. Bao G., Wang K., Yang L., He J., He B. [et al.]. Feasibility evaluation of a Zn-Cu alloy for intrauterine devices: In vitro and in vivo studies. Acta Biomater. 2022;142:374-387. https://doi.org/10.1016/j.actbio.2022.01.053
44. Hehrlein C., Schorch B., Kress N., Arab A., von Zur Mühlen C. [et al.]. Zn-alloy provides a novel platform for mechanically stable bioresorbable vascular stents. PLoS One. 2019;14(1):0209111. https://doi.org/10.1371/journal.pone.0209111
45. Qin Y., Liu A., Guo H., Shen Y., Wen P. [et al.]. Additive manufacturing of Zn-Mg alloy porous scaffolds with enhanced osseointegration: In vitro and in vivo studies. Acta Biomater. 2022;145:403-415. https://doi.org/10.1016/j.actbio.2022.03.055
46. Sun J., Zhang X., Shi Z. Z., Gao X. X., Li H. Y. [et al.]. Development of a high-strength Zn-Mn-Mg alloy for ligament reconstruction fixation. Acta Biomater. 2021;119:485-498. https://doi.org/10.1016/j.actbio.2020.10.032
47. Bai J., Xu Y., Fan Q., Cao R., Zhou X. [et al.]. Mechanical Properties and Degradation Behaviors of Zn-xMg Alloy Fine Wires for Biomedical Applications. Scanning. 2021:4831387. https://doi.org/10.1155/2021/4831387
48. Farabi E., Sharp J., Vahid A., Wang J., Fabijanic D. M. [et al.]. Biodegradable Zn Alloy with Exceptional Mechanical and In Vitro Corrosion Properties for Biomedical Applications. ACS Biomater. Sci. Eng. 2021;7(12):5555- 5572. https://doi.org/10.1021/acsbiomaterials.1c00763
Ключевые слова: материал, травма, дети, биорезорбируемый, металл