logo
Медицинский вестник
Северного Кавказа
Научно-практический журнал
Зарегистрирован в Федеральной службе
по надзору за соблюдением законодательства
в сфере массовых коммуникаций
и охране культурного наследия
ПИ №ФС77-26521 от 7 декабря 2006 года
ISSN 2073-8137
rus
русский
eng
english

Поиск по сайту




Адрес редакции
355017, Ставрополь, улица Мира, 310.

Телефоны
(8652) 35-25-11, 35-32-29.

E-mail
medvestnik@stgmu.ru

Рейтинг@Mail.ru

Современное представление о биологической роли и клиническом значении миостатина – главного регулятора роста и дифференцировки мышц

[Обзоры]
Кукес Владимир Григорьевич; Газданова Альбина Амырхановна; Фуралев Владимир Александрович; Маринин Валерий Федорович; Перков Александр Владимирович; Ленкова Надежда Ивановна; Соловьева Светлана Александровна; Рязанцева Ольга Владимировна;

Представлен обзор публикаций, посвященных изучению физиологической роли миостатина-белка, относящегося к классу миокинов, семейству трансформирующих факторов роста β (TGF-β), при различных патологических состояниях, таких как рак, хроническая сердечная недостаточность, хроническая почечная недостаточность, ХОБЛ, СПИД и др. Показана ключевая роль миостатина как отрицательного регулятора роста мышечной ткани в развитии кахексии при данных патологических состояниях. Подробно приведена схема синтеза и активации миостатина. Освещены основные физиологические свойства и клиническая значимость. Детально проанализированы экзогенные и эндогенные факторы, оказывающие влияние на синтез и активность миостатина. Рассмотрены возможные пути влияния (медикаментозные и немедикаментозные) на метаболизм миостатина.

Скачать

Список литературы:
1. Das D. K., Graham Z. A., Cardozo C. P. Myokines in skeletal muscle physiology and metabolism: Recent advances and future perspectives. Acta Physiol. (Oxf). 2020;228(2):e13367.
https://doi.org/10.1111/apha.13367
2. Костюнина Д. С., Иванова А. Д., Смирнова О. В. Миостатин: двадцать лет спустя. Физиология человека. 2018;44(1):88-101.
https://doi.org/10.7868/S0131164618010125
3. Baczek J., Silkiewicz M., Wojszel Z. B. Myostatin as a Biomarker of Muscle Wasting and other PathologiesState of the Art and Knowledge Gaps. Nutrients. 2020;11;12(8):2401.
https://doi.org/10.3390/nu12082401
4. Kim J. H., Kang S. H., Lee M., Youn G. S., Kim T. S. Serum Myostatin Predicts the Risk of Hepatocellular Carcinoma in Patients with Alcoholic Cirrhosis: A Multicenter Study. Cancers (Basel). 2020;12;12(11):33-47.
https://doi.org/10.13390/cancers12113347
5. Laurent M. R., Dupont J., Dejaeger M., Gielen E. Myostatin: A Powerful Biomarker for Sarcopenia and Frailty? Gerontology. 2019;65(4):383-384.
https://doi.org/10.1159/000495839
6. Pirruccello-Straub M., Jackson J., Wawersik S., Webster M. T., Salta L. [et al.]. Blocking extracellular activation of myostatin as a strategy for treating muscle wasting. Sci. Rep. 2018;(8):2292.
https://doi.org/10.1038/s41598-018-20524-20529
7. Grade C. V., Mantovani C. S., Alvares L. E. Myostatin gene promoter: structure, conservation and importance as a target for muscle modulation. J. Animal. Sci. Biotechnol. 2019;(10):32.
https://doi.org/10.1186/s40104-019-0338-5
8. Favia M., Fitak R., Guerra L., Pierri C. L., Faye B. [et al.]. Beyond the Big Five: Investigating Myostatin Structure, Polymorphism and Expression in Camelus dromedarius. Front. Genet. 2019;(10):502.
https://doi.org/10.3389/fgene.2019.00502
9. Aiello D., Patel K., Lasagna E. The myostatin gene: an overview of mechanisms of action and its relevance to livestock animals. Anim. Genet. 2018;49:505-519.
https://doi.org/10.1111/age.12696
10. Lee S.-J., Lehar A., Meir J. U., Koch C., Morgan A. [et al.]. Targeting myostatin/activin A protects against skeletal muscle and bone loss during spaceflight. Proc. Nat. Acad. Sci. 2020;117(38)23942-23951.
https://doi.org/10.1073/pnas.2014716117
11. Cotton T. R., Fischer G., Wang X., McCoy J. C., Czepnik M. [et al.]. Structure of the human myostatin precursor and determinants of growth factor latency. EMBO J. 2018;(37):367-383.
https://doi.org/10.15252/embj.201797883
12. Yoon J. D., Hwang S. U., Kim E., Jin M., Kim S., Hyun S. H. GDF8 activates p38 MAPK signaling during porcine oocyte maturation in vitro. Theriogenology. 2017;(101):123-134.
https://doi.org/10.1016/j.theriogenology.2017.06.003
13. Aravena J., Abrigo J., Gonzalez F., Aguirre F., Gonzalez A. [et al.]. Angiotensin (1-7) Decreases Myostatin-Induced NF-κB Signaling and Skeletal Muscle Atrophy. Int. J. Mol. Sci. 2020;10;21(3):1167.
https://doi.org/10.3390/ijms21031167
14. Rausch V., Sala V., Penna F., Porporato P. E., Ghigo A. Understanding the common mechanisms of heart and skeletal muscle wasting in cancer cachexia. Oncogenesis. 2021;10(1):1.
https://doi.org/10.1038/s41389-020-00288-6
15. Dong J., Dong Y., Chen Z., Mitch W. E., Zhang L. The pathway to muscle fibrosis depends on myostatin stimulating the differentiation of fibro/adipogenic progenitor cells in chronic kidney disease. Kidney Int. 2017;91(1):119-128.
https://doi.org/10.1016/j.kint.2016.07.029
16. Armstrong V. S., Fitzgerald L. W., Bathe O. F. CancerAssociated Muscle Wasting – Candidate Mechanisms and Molecular Pathways. Int. J. Mol. Sci. 2020;21(23):9268.
https://doi.org/10.3390/ijms21239268
17. Consitt L. A., Clark B. C. The Vicious Cycle of Myostatin Signaling in Sarcopenic Obesity: Myostatin Role in Skeletal Muscle Growth, Insulin Signaling and Implications for Clinical Trials. J. Frailty Aging. 2018;7(1):21-27.
https://doi.org/10.14283/jfa.2017.33
18. Lena A., Anker M. S., Springer J. Muscle Wasting and Sarcopenia in Heart Failure – The Current State of Science. Int. J. Mol. Sci. 2020;8;21(18):6549.
https://doi.org/10.3390/ijms21186549
19. Dong J., Dong Y., Chen Z., Mitch W. E., Zhang L. The pathway to muscle fibrosis depends on myostatin stimulating the differentiation of fibro/adipogenic progenitor cells in chronic kidney disease. Kidney Int. 2017;91(1):119-128.
https://doi.org/10.1016/j.kint.2016.07.029
20. Kerschan-Schindl K., Ebenbichler G., Gruther W., FogerSamwald U., Kudlacek S. [et al.]. Myostatin and other musculoskeletal markers in lung transplant recipients. Clin. Exp. Med. 2019;(19):77-85.
https://doi.org/10.1007/s10238-018-0532-3
21. Nishikawa H., Enomoto H., Ishii A., Iwata Y., Miyamoto Y. [et al.]. Elevated serum myostatin level is associated with worse survival in patients with liver cirrhosis. J. Cachexia Sarcopenia Muscle. 2017;8(6):915-925.
https://doi.org/10.1002/jcsm.12212
22. Morel J., Palao J. C., Castells J., Desgeorges M., Busso T. [et al.]. Regulation of Akt-mTOR, ubiquitin-proteasome and autophagy-lysosome pathways in locomotor and respiratory muscles during experimental sepsis in mice. Sci. Rep. 2017;7(1):10866.
https://doi.org/10.1038/s41598-017-11440-5
23. Dasarathy S. Myostatin and beyond in cirrhosis: all roads lead to sarcopenia. J. Cachexia Sarcopenia Muscle. 2017;8(6):864-869.
https://doi.org/10.1002/jcsm.12262
24. Sakuma K., Aoi W., Yamaguchi A. Molecular mechanism of sarcopenia and cachexia: recent research advances. Pflugers Arch. 2017;469(5-6):573-591.
https://doi.org/10.1007/s00424-016-1933-3
25. Collamati A., Marzetti E., Calvani R., Tosato M., D’Angelo E. [et al.]. Sarcopenia in heart failure: mechanisms and therapeutic strategies. J. Geriatr. Cardiol. 2016;13(7):615-624.
https://doi.org/10.11909/j.issn.1671-5411.2016.07.004
26. Rashidlamir A., Attarzadeh Hosseini R. S., Hejazi K., Motevalli Anberani S. M. The effect of eight weeks resistance and aerobic training on myostatin and follistatin expression in cardiac muscle of rats. J. Cardiovasc. Thorac. Res. 2016;8(4):164-169.
https://doi.org/10.15171/jcvtr.2016.33
27. Furihata T., Kinugawa S., Fukushima A., Takada S., Homma T. [et al.]. Serum myostatin levels are independently associated with skeletal muscle wasting in patients with heart failure. Int. J. Cardiol. 2016;220:483-487.
https://doi.org/10.1016/j.ijcard.2016.06.231
28. Lim S., McMahon C. D., Matthews K. G., Devlin G. P., Elston M. S., Conaglen J. V. Absence of Myostatin Improves Cardiac Function Following Myocardial Infarction. Heart Lung. Circ. 2018;27(6):693-701.
https://doi.org/10.1016/j.hic.2017.05.138
29. Кобалава Ж. Д., Лазарев П. В., Гончаров А. С. Современный взгляд на проблемы патогенеза, диагностики и лечения алкогольной кардиомиопатии. Российский кардиологический журнал. 2019;24(11):164-172.
https://doi.org/10.15829/1560-4071-2019-11-164-172
30. Обрезан А. Г., Щербакова Н. В. Патогенетические механизмы развития патологии миокарда у больных со злокачественными новообразованиями: современное состояние проблемы. Кардиология. 2020;60(2):142-154.
https://doi.org/10.18087/cardio.2020.2.n985
31. Ju C. R., Zhang J. H., Chen M., Chen R. C. Plasma myostatin levels are related to the extent of right ventricular dysfunction in exacerbation of chronic obstructive pulmonary disease. Biomarkers. 2017;22(3-4):246-252.
https://doi.org/10.1080/1354750X.2016.1203999
32. Кузярова А. С., Гасанов М. З., Батюшин М. М., Голубева О. В. Молекулярные основы мышечного истощения: роль миостатина и протеинкиназы β в прогрессировании белково-энергетической недостаточности у пациентов на гемодиализе. Архив внутренней медицины. 2019;9(2):126-132.
https://doi.org/10.20514/2226-6704-2019-9-2-126-132
33. Watanabe H., Enoki Y., Maruyama T. Sarcopenia in Chronic Kidney Disease: Factors, Mechanisms, and Therapeutic Interventions. Biol. Pharm. Bull. 2019;42(9):1437-1445.
https://doi.org/10.1248/bpb.b19-00513
34. Armstrong V. S., Fitzgerald L. W., Bathe O. F. CancerAssociated Muscle Wasting-Candidate Mechanisms and Molecular Pathways. Int. J. Mol. Sci. 2020;21(23):9268.
https://doi.org/10.3390/ijms21239268
35. Loumaye A., De Barsy M., Nachit M., Lause P., Frateur L. [et al.]. Role of Activin A and Myostatin in Human Cancer Cachexia. J. Clin. Endocrinol. Metab. 2015;(100):2030-2038.
https://doi.org/10.1210/jc.2014-4318
36. Bing D., Feng Z., Jianghui W., Ye S., Wang L. [et al.]. The function of myostatin in the regulation of fat mass in mammals. Nutr. Metab. 2017;14(29):42.
https://doi.org/10.11186/s12986-017-0179-1
37. Lee H., Lim J. Y., Choi S. J. Oleate Prevents PalmitateInduced Atrophy via Modulation of Mitochondrial ROS Production in Skeletal Myotubes. Oxidat. Med. Cell. Long. 2017;(2017):11.
https://doi.org/10.1155/2017/2739721
38. Bian A., Ma Y., Zhou X., Guo Y., Wang W. [et. al.]. Association between sarcopenia and levels of growth hormone and insulin-like growth factor-1 in the elderly. BMC Musculoskelet. Disord. 2020;7;21(1):214.
https://doi.org/10.1186/s12891-020-03236-y
39. Cruz-Jentoft A. J., Bahat G., Bauer J., Boirie Y., Bruyere O. [et al.]. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing. 2019;48:601.
https://doi.org/10.1093/ageing/afz046
40. Rong Y. D., Bian A. L., Hu H. Y., Ma Y., Zhou X. Z. Study on relationship between elderly sarcopenia and inflammatory cytokine IL-6, anti-inflammatory cytokine IL-10. BMC Geriatr. 2018;18:308.
https://doi.org/10.1186/s12877-018-1007-9
41. Fife E., Kostka J., Kroc Ł., Guligowska A., Piglowska M. [et al.]. Relationship of muscle function to circulating myostatin, follistatin and GDF11 in older women and men. BMC Geriatr. 2018;(18):200.
https://doi.org/10.1186/s12877-018-0888-y
42. Bowen T. S., Schuler G., Adams V. Skeletal muscle wasting in cachexia and sarcopenia: Molecular pathophysiology and impact of exercise training. J. Cachexia Sarcopenia Muscle. 2015;(6):197-207.
https://doi.org/10.1002/jcsm.12043
43. Zheng H., Qiao C., Tang R., Li1 J., Bulaklak K. [et al.]. Follistatin N terminus differentially regulates muscle size and fat in vivo. Exp. Mol. Med. 2017;49.e377.
https://doi.org/10.1038/emm.2017.135
44. Al-Zaidya S. A., Sahenka Z., Rodino-Klapaca L. R., Kaspara B., Mendella J. R. Follistatin Gene Therapy Improves Ambulation in Becker Muscular Dystrophy. J. Neuromuscular Dis. 2015;2(3):185-192.
https://doi.org/10.3233/JND-150083
45. St. Andre M., Johnson M., Bansal P.N., Wellen J., Robertson A. [et al.]. A mouse anti-myostatin antibody increases muscle mass and improves muscle strength and contractility in the mdx mouse model of Duchenne muscular dystrophy and its humanized equivalent, domagrozumab (PF-06252616), increases muscle volume in cynomolgus monkeys. Skeletal Muscle. 2017;(7):25.
https://doi.org/10.1186/s13395-017-0141-y
46. Harish P., Malerba A., Lu-Nguyen N., Forrest L., Cappellari O. [et al.]. Inhibition of myostatin improves muscle atrophy in oculopharyngeal muscular dystrophy (OPMD). J. Cachexia, Sarcopenia Muscle. 2019;10:1016-1026.
https://doi.org/10.1002/jcsm.12438
47. Zhang D., Cao L., Wang Z., Feng H., Cai X. [et al.]. Salidroside mitigates skeletal muscle atrophy in rats with cigarette smoke-induced COPD by up-regulating myogenin and down-regulating myostatin expression. Biosci. Rep. 2019;39(11):BSR20190440.
https://doi.org/10.1042/BSR20190440
48. Mafi F., Biglari S., Afousi A. G., Gaeini A. A. Improvement in Skeletal Muscle Strength and Plasma Levels of Follistatin and Myostatin Induced by an 8-Week Resistance Training and Epicatechin Supplementation in Sarcopenic Older Adults. J. Aging Phys. Act. 2019;27(3):384-391.
https://doi.org/10.1123/japa.2017-0389
49. Rashidlamir A., Attarzadeh Hosseini S. R., Hejazi K., Motevalli Anberani S. M. The effect of eight weeks resistance and aerobic training on myostatin and follistatin expression in cardiac muscle of rats. J. Cardiovasc. Thorac. Res. 2016;8(4):164-169.
https://doi.org/10.15171/jcvtr.2016.33
50. Ábrigo J., Elorza A. A., Riedel C. A., Vilos C., Simon F. [et al.]. Role of Oxidative Stress as Key Regulator of Muscle Wasting during Cachexia. Oxid. Med. Cell. Longev. 2018;28;2018:2063179.
https://doi.org/10.1155/2018/2063179
51. Enoki Y., Watanabe H., Arake R., Sugimoto R., Imafuku T. [et al.]. Indoxyl sulfate potentiates skeletal muscle atrophy by inducing the oxidative stress-mediated expression of myostatin and atrogin-1. Sci. Rep. 2016;(6):32084.
https://doi.org/10.1038/srep32084
52. Bataille S., Chauveau P., Fouque D., Aparicio M., Koppe L. Myostatin and muscle atrophy during chronic kidney disease. Nephrol. Dialys. Transplantat. 2020;(9):gfaa129.
https://doi.org/10.1093/ndt/gfaa129332

Ключевые слова: миостатин, кахексия, рак, хроническая сердечная недостаточность


Учредители:
Ставропольская государственная медицинская академия
Государственный научно-исследовательский институт курортологии
Пятигорская государственная фармацевтическая академия