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IMPORTANCE OF EEG FEATURES IN ACTIVE AND QUIET SLEEP
FOR ASSESSMENT OF NEWBORN BRAIN MATURATION AT NEONATAL CENTRES
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AHAAU3 3HAYMMOCTU 33T B BbICTPOA U MEAAEHHOM
PA3AX CHA AN OLLEHKW PA3BUTUA MO3TA
HOBOPOXAEHHbIX B HEOHATAAbHbIX LLEHTPAX

B. LLLeTuHUH, A. AkanTte

YHuusepcurteT beadopalumnpa, BeAuko6puTaHus

Newborn brain development can be analysed and interpreted by EEG-experts scoring maturity-related features in
sleep electroencephalogram (EEG). These features widely vary during the sleep hours, and their importance can be
different in quiet and active sleep stages. The level of muscle and electrode artefacts during the active sleep stage
is higher than that in the quiet stage that could reduce the importance of features extracted from the active stage. In
this paper, we use Bayesian methodology of averaging over Decision Tree (DT) models to assess the newborn brain
maturity and explore importance of EEG features extracted from the quiet and active sleep stages. The use of DT
models enables to find the EEG features which are most important for the brain maturity assessment. The method has
been verified on EEG data recorded from 995 patients of neonatal centres under a project of the University of Jena
(Germany) in 2004. The research has been supported by the Leverhulme Trust (UK), and anonymised EEG recordings
have been made available for public research under support of the University of Bedfordshire (UK).

Keywords: newborn electroencephalogram, feature importance, sleep stages, Bayesian classification, decision
trees

[na pelweHns 3agay oLeHKN pasBuTS MO3ra HOBOPOXAEHHbIX 9KCMepTbl HeOHaTasbHbIX LLeHTPOB B EBpone n Ce-
BEPHOW AMeprKe UCMOoSb3YIOT aNiekTpoaHuedanorpammel (33), 3anncaHHble BO BPeMs CHa HOBOPOXAEHHbIX, AJ1s
MoC/IeayIoLLLEero Pacno3HaBaHnsa 1 aHanmaa NPOrHOCTMYECKMX MPUSHAKOB. ITU NPU3HaKKU, OHAKO, BAPbMPYIOT B Te-
YyeHue cHa, B TO BPeMsi Kak MX napameTpbl PasinyaloTcs B MeASIeHHOM 1 BbICTPOMN cTaamax CHa. YPOBHM MYCKYJIbHbIX
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M 9NeKTPOAHbIX apTedaKkToB, Kak NPaBuio, HabMoaaTCA BbICOKMMU B ObICTPOM dase CHa, YTO CHUXaeT NPOrHo-
CTUYECKYIO 3HA4YMMOCTb NPU3HaKoB B 3Ton ¢dase. NpencrasneH HOBbIN METOA, KOTOPbI NUCnonb3yeT banecosckne
OpeBa peLleHnii onsa oueHNKn 3HadmMmMocTn 3l Npu3HaKoB, BbISIBNIEHHbIX B MeOJ1eHHOM 1 ObiCTpon dasax cHa. Nc-
Nosb30BaHME Taknx MOAENeN NO3BOJSIUIIO BbIBUTL MPU3HAKN, KOTOPble 061aaalT HanbosbLen NPOrHOCTUYECKOMN
3HAYUMOCTbIO, U, YTO KpaKHe BaXHO O/ CHUXEHUSI PUCKa OLUMOOYHbBIX PELLUEHWNI, OLEHUTL OXNOAEMbIE UHTEPBAIbI
NPOrHO30B NMpu BapnabenbHOCTN Npu3HakoB. Pe3dynbTaThl 6binv BEpndULMpoBaHbl Ha 6osbLuoi Beibopke D3I 3a-
nuceit, caenaHHbix Ha 952 NauMeHTax HeoHaTalbHbIX LIEHTPOB MO NPOoekTy yHnesepcuteTta Mensl (fepmanus). Paspa-
60Tka HoBOro Mmetofa 6bina nogaepxaHa poHaom Leverhulme Trust (Benvkobputanus). 931 3anvcu 6binn caenaHsi
OOCTYMNHbIMM AN UCccienoBaHuii Npu noanepxke yHuBepcuteta beadopawmpa (BennmkobputaHums).

KnoueBbie c/ioBa: 371eKTPO3HUegasiorpamMmmbl HOBOPOXAEHHbIX, MPOrHOCTUYeckasi 3Ha4YnmMocCTb, ¢asbl CHa,

bariecoBckuii MeToa, APEBO PELLUEHNI

by experts observing the maturity-related

patterns in sleep electroencephalograms (EEG)
[1, 2]. Clinical experts use these patterns to estimate
a newborn’s physiological age [3], although these
patterns widely vary during sleep hours and between
patients so that the analysis becomes difficult and
laborious. For assisting experts in the interpretation,
automated analysis of the maturity-related patterns
has been proposed and shown promising [2, 4, 12].

Typically, sleep EEG is recorded during a few hours
and comprises one or more cycles of the active sleep
(AS) and quiet sleep (QS) stages. These cycles or stages
are recognizable in sleep EEG, and the EEG features
extracted from these stages make different contribution
to the maturity assessment [5].

The sleep stages are recognizable in newborn EEG
since approximately 30 weeks post-conception. At this
age, the QS is recognized as a pattern with high voltage
bursts of delta, theta and alpha activity interrupted by
periods with very low voltage. In contrast, the AS patternis
recognized as a longer period of uninterrupted medium-
voltage theta and delta activity. The cyclic variations in the
voltage and frequency corresponding to the sleep stages
become more distinguishable with the brain maturation.
For full-term newborns, the AS patternis characterized by
low-to-moderate voltage activity in theta, alpha and beta
bands, whereas the QS pattern is often characterized by
a high voltage delta activity [2, 5, 6].

The QS and AS patterns were found significantly
different in terms of voltage, powers in the delta and theta
bands, as well as in terms of the number and length of
pseudo-stationary segments [7].

Such a feature as the dimensional complexity of
neonatal EEG has been explored and shown to be
significantly higher during the AS [8]. An attempt to
discriminate the sleep stages by using a set of 88 statistical
features representing the voltage, frequency and cepstral
coefficients has been described in [9]. Another approach
has been undertaken by segmenting newborn EEG into
pseudo-stationary intervals which are then clustered
by the mean frequency and voltage. It has been shown
that the EEG intervals from the QS and AS stages were
assigned to different clusters [10]. Another study has
shown that the importance of features extracted from the
QS and AS stages was different. Particularly, the powers
in theta and beta bands were most informative during
the AS, whereas the alpha band was prevalent during
the QS [11]. A recent study [18] showed that important
maturational features related to synchrony of EEG activity
can be extracted from QS stage.

The above findings inspired us to explore the
importance of EEG features extracted from the QS and
AS stages for the assessment. In this research we use the
methodology of Bayesian averaging over classification

Newborn’s brain development can be assessed
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models, in particularly, over decision tree (DT) models
[13, 14]. These models are widely used in practice due
to their explanatory ability. The use of DT models has
been also shown promising for estimating EEG feature
importance [15, 17]. The Bayesian averaging enables
estimation of the full predictive posterior probability
distribution that is required for accurate estimation of
uncertainty in assessments.

Aim of the investigation: Development of a new
method for reliable evaluation of brain maturity in
newborns at risk of developmental pathologies for EEG
experts of neonatal centres

Material and Methods. In our experiments we used
952 EEG obtained in different clinics from newborns of
age from 36 to 45 weeks of post-conception. Each of
the 10 age groups has been made including around 100
recordings. The recordings were made with the C3-T3
and C4-T4 electrodes with a sampling rate 100 Hz. The
electrodes were positioned according to the standard 10-
20 electrode system.

Newborns sleep EEG are weak signals with average
amplitude around 50 pV. During sleep hours EEGs are
contaminated by noise and artifacts, so that there is the
need of cleaning EEG data. Before processing, EEGs are
normally rectified to make all amplitudes positive.

The variability of an EEG recorded during sleep hours
of a newborn is quite high and can additionally affect the
accuracy of recognition of age-related patterns in EEG.

We found that the Mean-to-Deviation Ratio (MDR),
defined as m/s, was around 1.0, where m and s are the
mean and standard deviation of rectified EEG amplitudes.

The common artifacts, such as muscle, cardiac, eye
blinking, breathing, and electrode movement, can be la-
beled by an expert and then removed from EEG data. In
our EEG data, the rate of labeled artifacts widely ranged
from 0.01 to 0.5, and the average rate of artifacts was
around 0.1.

The EEGs were recorded in a number of clinics, and
artifacts were labeled by different EEG experts. Conse-
quently, we could not expect that the EEG artifacts were
labeled consistently and so decided to remove from the
EEG data only amplitude artifacts. We defined these ar-
tifacts as EEG samples with abnormally high amplitudes.
Such artifacts can be automatically detected by using the
standard method of adaptive thresholding [16].

The idea of this method is based on the observation
that the probability of abnormal EEG samples is distinctly
smaller than that of normal samples. For stationary sig-
nals, the abnormality of samples can be adequately es-
timated in terms of their amplitudes. However, EEG are
non-stationary signals, and abnormalities should be es-
timated within a window sliding over the EEG recording.
The standard deviation over samples in a window has
been shown providing more accurate estimates of the
abnormality than the mean over sample amplitudes as
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its value is more sensitive to the non-stationarity of EEG
[16].

In our implementation, a window of length Wis moved
over an EEG of length N, and the deviation d; over sam-
ples in the window is counted for its central sample

W w
i 5 +1, ..., N 5

The probability distribution over d; is estimated in or-
der to find the most frequent value d, as well as the ma-
ximal deviation dnax. Consequently, we expect that the
normal EEG samples appear most frequently with the de-
viation d, and the abnormal samples appear with a higher
deviation. This allows us to count probability g; that the
" sample with deviation d;is an artifact:

q=(9=9) d<di<da
max

Given an acceptable probability of artifacts in the win-
dow, go, we can then label a sample as an artifact if its
deviation exceeds the threshold dp:

do=d*(dmax—d) qo.

The above technique is based on finding a reasonable
trade-off between the accuracy of artifact detection and
the amount of normal EEG samples being removed. In our
experiments, we found that such a trade-off is achieved
with a sliding window of 10-s duration and q¢=0.225.

Figure 1 shows an example of removing artifacts from
a sleep EEG. The upper plot shows the raw EEG which
was contaminated by artifacts visible as samples of a high
amplitude. The second plot shows the labels of these ar-
tifacts, whose rate was 0.116. The third plot shows the
clean EEG. We see that the MDR of the raw EEG was 0.97,
and for the clean EEG it increased to 1.06 due to removal
of the amplitude artifacts.

MDR=0.972
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Fig. 1. Segmentation of QS stages in EEG

The background information about sleep patterns in
EEG given in the Introduction inspired us to segment EEG
into QS and AS sleep stages. Similarly to the above tech-
nique of detecting EEG artifacts, these sleep stages can
be segmented by adaptive thresholding. Within this tech-
nique, duration of the window and threshold value are
made adjustable in order to achieve the best accuracy of

segmentation on EEG data labeled by an expert. Besides,
the information about a minimal duration of QS stage and
a maximal duration of breaks, which can happen during
QS, are used to improve the segmentation accuracy.

In our experiments, a threshold was adapted to an
EEG recording as follows. First, we counted the deviation
of samples, dx, k=1, ..., K, inawindow sliding over an EEG

recording, where K=Ent(%v) is the number of windows
counted in an EEG, and L is the window shift step. Then
we counted a probability distribution histogram, p;, i=1, ...,
M, over the deviation values v;, where M is the number of
bins in the histogram. Namely, the probabilities p; are the
portions of samples whose deviation values are between v;
and vi.1. Thus, given a probability Py, we can find a bin Mg:

Mo
2 pi=Po, Mo<M,
i=1

and then choose a corresponding deviation interval,
whose center is defined as the desired threshold. In this
context, probability Pyis normally associated with a prior
on the frequency of an event detected by the segmenta-
tion technique.

In our experiments on EEG with the labeled QS stages,
we have set Pp=0.5 to reflect the fact that the QS intervals
represent, on average, a half of an EEG recording. The
best accuracy of segmentation was achieved when the
maximal duration of QS break intervals was set equal to
one min. The minimal duration of QS intervals was set to
seven min to enable segmenting QS intervals fragmented
at the beginning and at the end of an EEG recording.

The QS segmentation of an EEG is illustrated in Figu-
re 1. The upper plot shows the EEG as the solid line. The
dashed line in this plot shows the detected QS stages.
The second plot shows the amplitude artifacts which were
detected during the QS stages. The third plot shows the
EEG cleaned from the artifacts. The lower plot illustrates
the process of thresholding detection of QS stages in the
clean EEG. The dashed line in the third plot shows the re-
sult of QS detection. As the segmentation is made on the
clean EEG, finally we extend the duration of sleep stages
to the artifacts removed from the raw EEG. The resultant
QS labels are shown in the upper plot as the dashed line.

The upper plot shows that the QS stages have been
properly segmented despite the high level of artifacts
shown to be detected in the second plot. The window du-
ration Wand shift L were setto 30 sand 1.5 s, respectively.

The labeled QS and AS intervals were used for ex-
tracting EEG features for classification of brain maturity
within the methodology of Bayesian averaging over DT
models. The details of implementation of the Bayesian
method can be found in [17].

Results and Discussion. After cleaning and
segmentation, the EEG data were represented by
9 features, namely the spectral powers in the six frequency
bands, (1) Subdelta, (2) Delta, (3) Theta, (4) Alpha,
(5) Beta, and (6) Beta2 (features 1-6), and three features
of EEG discontinuity, described in [17]. The spectral powers
have been computed with fast Fourier transform over 6-s
epochs, which then were averaged within each band in
order to represent an EEG by a six-element vector. The
artifacts were detected and removed, and the sleep stages
in each EEG were segmented into QS and AS intervals.

Table 1 shows the rates of artifacts removed from the
QS and AS intervals as well as from the whole EEG. This
rate includes EEG samples which have been detected as
artifacts within the proposed segmentation technique.
The artifact rates are shown with the mean and 2c inter-
vals counted over the EEG recordings. We can observe
that the rate of artifacts detected in the QS intervals is
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more than twice higher than that in the AS intervals. The
second plot in Figure 1, which shows the labeled artifacts
in the raw EEG, confirms that the artifact rate in the QS
intervals is higher than that in the AS intervals.

Table 1
Artifact rates in the sleep stages
Sleep stage Rate
QS 0.12+0.21
AS 0.05+0.07
QS and AS 0.09+0.13

In the first two experiments with the Bayesian classi-
fication, we used the features extracted from the QS and
AS intervals. The third experiment has been run with the
features extracted from the whole, unsegmented EEG in
order to compare the importance of features within the
Bayesian classification.

Table 2 shows the accuracy of the Bayesian classifi-
cation obtained with the above settings within a 10-fold
cross validation for the features extracted from the QS
and AS stages as well as from the whole EEG. The accu-
racy is evaluated within three intervals of weeks post-con-
ception commonly used by the EEG experts.

Table 2
Accuracy of assessment for 10 groups
within three intervals
Sleep stage Performance, %, week intervals Entropy
0 +1 +2
Qs 25.2+7.4 | 64.8+8.8 | 85.5+8.3 | 206.1+11.7
AS 26.7£9.9 | 60.8+10.0 | 82.5+7.1 | 210.6+11.8
Both 28.8+5.5 | 63.949.0 | 82.9+7.5 | 207.14+9.8

The performance is shown by the mean accuracy
within 2 standard deviation intervals. The entropy E is
counted over an ensemble of K DT models, in order to

K
estimate the uncertainty of the ensemble: E= X p; logx(p;),
i=1

where p; are the class posterior probabilities provided by
the DT models.

Figure 2 shows the importance of features extracted
from the QS and AS intervals. Observing the results, we
see that the most important feature extracted from the
AS intervals is related to the discontinuity (feature 7). In
the QS intervals, the powers in the Delta, Theta and Alpha
bands are also shown to be important.

Conclusions. In this paper, we explored the
importance of EEG features used for the newborn
brain maturity assessment within the methodology of
Bayesian averaging over decision tree (DT) models.
This methodology has been shown providing the most
accurate estimates of class posterior distribution, while
the use of DT models has been shown capable of finding
features making valuable contribution to the assessment.

Based on clinical observations that the EEG features in
various sleep stages are different, we assumed that there
exist EEG intervals which provide the most informative
features, which can be extracted from intervals of quiet sleep.

References

1. J. Clinical relevance of age-dependent EEG signatures
in the detection of neonates at high risk for apnea.
Neuroscience Letters. 1999;268(3):123-126.
doi: 10.1016/S0304-3940(99)00397-3

2. CooperR.,BinnieC,SchawJ. C. Clinicalneurophysiology:
EEG, pediatric neurophysiology, special techniques and
applications. Elsevier Science, 2003.

3. Scher M. S. Neurophysiological assessment of brain
function and maturation: A measure of brain adaptation
in highriskinfants. Pediatric Neurology. 1997;16(3):191-
198. doi: 10.1016/S0887-8994(97)00008-8

324

Pediatrics
0.15 AS
3
% 0.1} % % 4
]
o
£005) 5 P ¢ @ % |
o L n I L I L n I L
1 2 3 4 5 6 7 8 9
Features
0.15 QS
3
% 0.1¢ % i
]
T %
E005[ % ]

o L L L L L L L L L
1 2 3 4 5 6 7 8 9

Features

Fig. 2. Mean and standard deviation of importance of features
extracted from AS and QS stages

For testing this assumption, the EEGs were
automatically segmented into the quiet and active sleep
intervals. Before the segmentation, the EEGs were
automatically cleaned from the amplitude artifacts. Both
the segmentation and artifact detection have been made
with the standard adaptive thresholding techniques. For
each sleep stage, the segmented EEG intervals have
been split into epochs and represented by the standard
spectral bands. Finally, each band has been averaged
over the epochs to represent the EEG intervals by a
vector entry.

In our experiments, we used the EEG data recorded
from newborns of age 36 to 45 weeks post-conception.
We found that the EEG features extracted from the
quiet sleep intervals have provided more accurate
age classification in the comparison with the features
extracted from the active sleep intervals.

The above allows us to conclude that intervals of the
quiet sleep in EEG are more informative for the newborn
brain maturity assessment within the methodology of
Bayesian averaging over DT models. Obviously, this result
is conditioned on the methods chosen in our research
for segmenting EEG into sleep intervals, extracting
features from the segmented EEG intervals as well as for
classification of age-related patterns.

Acknowledgments. The research is funded by the
Leverhulme Trust, UK. The authors are grateful to the
University of Jena, Germany, for granting the clinical EEG
data for the research.

4. Kato T., Okumura A., Hayakawa F., Tsuji T., Natsume J.,
Watanabe K. Evaluation of brain maturation in pre-term
infants using conventional and amplitude-integrated
electroencephalograms.  Clinical ~ Neurophysiology.
2010;122(10):1967-1972. doi: 10.1016/j.clinph.2010.
12.063

5. Boylan G. B., Murray D. M., Rennie J. M. Neonatal
cerebral investigation. Cambridge University Press,
2008.

6. Niedermeyer E., da Silva L. F. H., Electroencephalo-
graphy: basic principles, clinical applications, and rela-
ted fields, 5th ed., Lippincott Williams & Wilkins, 2005.



MEAULUHCKUA BECTHUK CEBEPHOTO KABKA3A MEDICAL NEWS OF NORTH CAUCASUS

2017.T.12. Ne 3 2017.Vol. 12. Iss. 3
7. Paul K., Krajéa V., Roth Z., Melichar J., Petrdnek S. of the electroencephalogram. Clinical Neurophysiology.
Comparison of quantitative EEG characteristics of 2016;127(8):2910-2918. doi: 10.1016/j.clinph.
quiet and active sleep in newborns. Sleep Medicine. 2016.02.024
2003;4(6):543-552. doi: 10.1016/j.sleep.2003.08.008 13. Chipman H., George E., McCullock R. Bayesian
8. Janjarasjitt S., Scher M. S., Loparo K. Nonlinear CART model search. Journal of American Statistics.
dynamical analysis of the neonatal EEG time series: The 1998;93(443):935-960. doi: 10.1080/01621459.1998.
relationship between neurodevelopment and complexity. 10473750
Clinical Neurophysiology. 2008;119(8):822-836. 14. Denison D. G. T, Holmes C. C., Mallick B. K.,
doi: 10.1016/j.clinph.2007.11.012 Smith A. F. M. Bayesian Methods for Nonlinear
9. Lofhede J., Thordstein M., Lofgren N., Flisberg A., Rosa- Classification and Regression. Wiley, 2012.
Zurera M. [et al.] Automatic classification of background 15. Schetinin V., Jakaite L. Classification of newborn EEG
EEG activity in healthy and sick neonates. Journal of maturity with Bayesian averaging over decision trees.
Neural Engineering. 2010;7(1). doi: 10.1088/1741- Expert Systems with Applications. 2012;39(10):9340-
2560/7/1/016007 9347. doi: 10.1016/j.eswa.2012.02.184
10. Krajéa V., Petranek S., Mohylova J., Paul K., Gerla V. [et 16. Nolan H., Whelan R., and Reilly R. B. FASTER: Fully
al.] Modeling the microstructure of neonatal EEG sleep Automated Statistical Thresholding for EEG artifact
stages by temporal profiles. Proc. IFMBE Proceedings Rejection. J. Neurosci Methods. 2010;192(1):152-62.
of the 13th International Conference on Biomedical doi: 10.1016/j.jneumeth.2010.07.015
Engineering (CBME2008). 2009;23:133-137. 17. Schetinin V., Jakaite L. Extraction of features from sleep
11. Scher M. S., Steppe D. A., Banks D. L., Guthrie R. D., EEG for Bayesian assessment of brain development.
Sclabassi R. J. Maturational trends of EEG-sleep PLOS ONE. 2017;12(3):e0174027. doi: 10.1371/journal.
measures in the healthy preterm neonate. Pediatr. pone.0174027
Neurol.  1995;12(4):314-22. doi: 10.1016/0887- 18. Koolen N., Dereymaeker A., O. Ridsidnen, Jansen K.,
8994(95)00052-H Vervisch J. [et al.] Early development of synch-
12. O’Toole J. M., Boylan G. B., Vanhatalo S., Steven- rony in cortical activations in the human.
son N. J. Estimating functional brain maturity in very and Neuroscience. 2016;322:298-307. doi: 10.1016/j.
extremely preterm neonates using automated analysis neuroscience.2016.02.017

About authors:
Schetinin Vitaly, PhD, Senior Lecturer; tel.: +441582743120; e-mail: vitaly.schetinin@beds.ac.uk
Jakaite Livija, PhD, Research Assistant; tel.: +441582743120; e-mail: livija.jakaite@gmail.com

© Group of authors, 2017

UDC 616-053.2:615.015.81

DOI - https://doi.org/10.14300/mnnc.2017.12084
ISSN - 2073-8137

CHANGES IN CALCIFEDIOL CONCENTRATIONS IN INFANTS DEPENDING
ON THE CHOLECALCIFEROL DOSE AND DURATION OF THERAPY

Klimov L. Ya. !, Zakharova I. N. 2, Maltsev S. V. 3, Malyavskaya S. I. 4, Yagupova A. V. 1,
Dolbnya S. V. !, Kasyanova A. N. 2, Kuryaninova V. A. !, Bobryshev D. V.,
Ivanova A. V.1, Alkhimidi A. A. ', Temirkhanova l. V. !

! Stavropol State Medical University, Russian Federation

2 Russian Medical Academy of Continuous Postgraduate Education, Moscow,
Russian Federation

3 Kazan Medical Academy of Postgraduate Education, Russian Federation

4 Northern State Medical University, Arkhangelsk, Russian Federation

AVHAMUKA KAABLLUAUOAA Y AETEN TPYAHOTO BO3PACTA
B 3ABUCUMOCTU OT AO3bl U AAUTEABHOCTU
NMPUEMA NPEMNAPATOB XOAEKAAbBUNUPEPOAA
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1 CTaBpOnOAbCKMIA FOCYAQPCTBEHHbIN MEAULIMHCKUI YHUBEPCUTET, Poccuiickas Peaepaums
2 PoccMMCKAs MEAMLLMHCKAS OKOAEMUS HENPEPbLIBHOFO MOCA€ AMMAOMHOIO OGP A30BAHMS,
Mocksa, Poccumckas Pesepaums
3 KasaHcKkas MeAULMHCKAS OKAAEMUS MOCAEAUIMAOMHOrO 06pa3oBaHMs,
Poccumnckasa Pesepaums
4 CeBepHbIN roCYAQPCTBEHHbIN MEAULMHCKMIA YHUBEPCUTET, APXAHIeAbCK,
Poccunckas Peaepaums

The paper presents an analysis of the relationship between the duration of cholecalciferol supplementation at
different doses and the 25(OH)D concentration in infants during their first year of life. We evaluated 496 infants aged
1 month to 12 months who were divided into four groups depending on the duration of vitamin D supplementation: up
to 8 weeks, 8—-15 weeks, 16-24 weeks, and over 24 weeks.
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