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Importance of EEG Features in Active and Quiet Sleep  
for Assessment of Newborn Brain Maturation at Neonatal Centres 
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Анализ значимости ЭЭГ в быстрой и медленной  
фазах сна для оценки развития мозга  
новорожденных в неонатальных центрах
В. Щетинин, Л. Якайте

Университет Бедфордшира, Великобритания

Newborn brain development can be analysed and interpreted by EEG-experts scoring maturity-related features in 
sleep electroencephalogram (EEG). These features widely vary during the sleep hours, and their importance can be 
different in quiet and active sleep stages. The level of muscle and electrode artefacts during the active sleep stage 
is higher than that in the quiet stage that could reduce the importance of features extracted from the active stage. In 
this paper, we use Bayesian methodology of averaging over Decision Tree (DT) models to assess the newborn brain 
maturity and explore importance of EEG features extracted from the quiet and active sleep stages. The use of DT 
models enables to find the EEG features which are most important for the brain maturity assessment. The method has 
been verified on EEG data recorded from 995 patients of neonatal centres under a project of the University of Jena 
(Germany) in 2004. The research has been supported by the Leverhulme Trust (UK), and anonymised EEG recordings 
have been made available for public research under support of the University of Bedfordshire (UK).

Keywords: newborn electroencephalogram, feature importance, sleep stages, Bayesian classification, decision 
trees

Для решения задач оценки развития мозга новорожденных эксперты неонатальных центров в Европе и Се-
верной Америке используют электроэнцефалограммы (ЭЭГ), записанные во время сна новорожденных, для 
последующего распознавания и анализа прогностических признаков. Эти признаки, однако, варьируют в те-
чение сна, в то время как их параметры различаются в медленной и быстрой стадиях сна. Уровни мускульных 
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Newborn’s brain development can be assessed 
by experts observing the maturity-related 
patterns in sleep electroencephalograms (EEG) 

[1, 2]. Clinical experts use these patterns to estimate 
a newborn’s physiological age [3], although these 
patterns widely vary during sleep hours and between 
patients so that the analysis becomes difficult and 
laborious. For assisting experts in the interpretation, 
automated analysis of the maturity-related patterns 
has been proposed and shown promising [2, 4, 12]. 

Typically, sleep EEG is recorded during a few hours 
and comprises one or more cycles of the active sleep 
(AS) and quiet sleep (QS) stages. These cycles or stages 
are recognizable in sleep EEG, and the EEG features 
extracted from these stages make different contribution 
to the maturity assessment [5]. 

The sleep stages are recognizable in newborn EEG 
since approximately 30 weeks post-conception. At this 
age, the QS is recognized as a pattern with high voltage 
bursts of delta, theta and alpha activity interrupted by 
periods with very low voltage. In contrast, the AS pattern is 
recognized as a longer period of uninterrupted medium-
voltage theta and delta activity. The cyclic variations in the 
voltage and frequency corresponding to the sleep stages 
become more distinguishable with the brain maturation. 
For full-term newborns, the AS pattern is characterized by 
low-to-moderate voltage activity in theta, alpha and beta 
bands, whereas the QS pattern is often characterized by 
a high voltage delta activity [2, 5, 6]. 

The QS and AS patterns were found significantly 
different in terms of voltage, powers in the delta and theta 
bands, as well as in terms of the number and length of 
pseudo-stationary segments [7]. 

Such a feature as the dimensional complexity of 
neonatal EEG has been explored and shown to be 
significantly higher during the AS [8]. An attempt to 
discriminate the sleep stages by using a set of 88 statistical 
features representing the voltage, frequency and cepstral 
coefficients has been described in [9]. Another approach 
has been undertaken by segmenting newborn EEG into 
pseudo-stationary intervals which are then clustered 
by the mean frequency and voltage. It has been shown 
that the EEG intervals from the QS and AS stages were 
assigned to different clusters [10]. Another study has 
shown that the importance of features extracted from the 
QS and AS stages was different. Particularly, the powers 
in theta and beta bands were most informative during 
the AS, whereas the alpha band was prevalent during 
the QS [11]. A recent study [18] showed that important 
maturational features related to synchrony of EEG activity 
can be extracted from QS stage.

The above findings inspired us to explore the 
importance of EEG features extracted from the QS and 
AS stages for the assessment. In this research we use the 
methodology of Bayesian averaging over classification 

models, in particularly, over decision tree (DT) models 
[13, 14]. These models are widely used in practice due 
to their explanatory ability. The use of DT models has 
been also shown promising for estimating EEG feature 
importance [15, 17]. The Bayesian averaging enables 
estimation of the full predictive posterior probability 
distribution that is required for accurate estimation of 
uncertainty in assessments.

Aim of the investigation: Development of a new 
method for reliable evaluation of brain maturity in 
newborns at risk of developmental pathologies for EEG 
experts of neonatal centres 

Material and Methods. In our experiments we used 
952 EEG obtained in different clinics from newborns of 
age from 36 to 45 weeks of post-conception. Each of 
the 10 age groups has been made including around 100 
recordings. The recordings were made with the C3-T3 
and C4-T4 electrodes with a sampling rate 100 Hz. The 
electrodes were positioned according to the standard 10-
20 electrode system. 

Newborns sleep EEG are weak signals with average 
amplitude around 50 μV. During sleep hours EEGs are 
contaminated by noise and artifacts, so that there is the 
need of cleaning EEG data. Before processing, EEGs are 
normally rectified to make all amplitudes positive. 

The variability of an EEG recorded during sleep hours 
of a newborn is quite high and can additionally affect the 
accuracy of recognition of age-related patterns in EEG. 

We found that the Mean-to-Deviation Ratio (MDR), 
defined as m/s, was around 1.0, where m and s are the 
mean and standard deviation of rectified EEG amplitudes.

The common artifacts, such as muscle, cardiac, eye 
blinking, breathing, and electrode movement, can be la-
beled by an expert and then removed from EEG data. In 
our EEG data, the rate of labeled artifacts widely ranged 
from 0.01 to 0.5, and the average rate of artifacts was 
around 0.1. 

The EEGs were recorded in a number of clinics, and 
artifacts were labeled by different EEG experts. Conse-
quently, we could not expect that the EEG artifacts were 
labeled consistently and so decided to remove from the 
EEG data only amplitude artifacts. We defined these ar-
tifacts as EEG samples with abnormally high amplitudes. 
Such artifacts can be automatically detected by using the 
standard method of adaptive thresholding [16]. 

The idea of this method is based on the observation 
that the probability of abnormal EEG samples is distinctly 
smaller than that of normal samples. For stationary sig-
nals, the abnormality of samples can be adequately es-
timated in terms of their amplitudes. However, EEG are 
non-stationary signals, and abnormalities should be es-
timated within a window sliding over the EEG recording. 
The standard deviation over samples in a window has 
been shown providing more accurate estimates of the 
abnormality than the mean over sample amplitudes as 

и электродных артефактов, как правило, наблюдаются высокими в быстрой фазе сна, что снижает прогно-
стическую значимость признаков в этой фазе. Представлен новый метод, который использует Байесовские 
древа решений для оценики значимости ЭЭГ признаков, выявленных в медленной и быстрой фазах сна. Ис-
пользование таких моделей позволило выявить признаки, которые обладают наибольшей прогностической 
значимостью, и, что крайне важно для снижения риска ошибочных решений, оценить ожидаемые интервалы 
прогнозов при вариабельности признаков. Результаты были верифицированы на большой выборке ЭЭГ за-
писей, сделанных на 952 пациентах неонатальных центров по проекту университета Йены (Германия). Разра-
ботка нового метода была поддержана фондом Leverhulme Trust (Великобритания). ЭЭГ записи были сделаны 
доступными для исследований при поддержке университета Бедфордшира (Великобритания). 

Ключевые слова: электроэнцефалограммы новорожденных, прогностическая значимость, фазы сна,  
Байесовский метод, древо решений
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its value is more sensitive to the non-stationarity of EEG 
[16]. 

In our implementation, a window of length W is moved 
over an EEG of length N, and the deviation di over sam-
ples in the window is counted for its central sample

i=W+1, ..., N–W .
       2                     2 

The probability distribution over di is estimated in or-
der to find the most frequent value d, as well as the ma- 
ximal deviation dmax. Consequently, we expect that the 
normal EEG samples appear most frequently with the de-
viation d, and the abnormal samples appear with a higher 
deviation. This allows us to count probability qi that the  
ith sample with deviation di is an artifact:

qi=
(di–d),d≤di≤dmax

.
dmax 

Given an acceptable probability of artifacts in the win-
dow, q0, we can then label a sample as an artifact if its 
deviation exceeds the threshold d0:

d0=d+(dmax–d) q0.
The above technique is based on finding a reasonable 

trade-off between the accuracy of artifact detection and 
the amount of normal EEG samples being removed. In our 
experiments, we found that such a trade-off is achieved 
with a sliding window of 10-s duration and q0=0.225.

Figure 1 shows an example of removing artifacts from 
a sleep EEG. The upper plot shows the raw EEG which 
was contaminated by artifacts visible as samples of a high 
amplitude. The second plot shows the labels of these ar-
tifacts, whose rate was 0.116. The third plot shows the 
clean EEG. We see that the MDR of the raw EEG was 0.97, 
and for the clean EEG it increased to 1.06 due to removal 
of the amplitude artifacts. 

Fig. 1. Segmentation of QS stages in EEG

The background information about sleep patterns in 
EEG given in the Introduction inspired us to segment EEG 
into QS and AS sleep stages. Similarly to the above tech-
nique of detecting EEG artifacts, these sleep stages can 
be segmented by adaptive thresholding. Within this tech-
nique, duration of the window and threshold value are 
made adjustable in order to achieve the best accuracy of 

segmentation on EEG data labeled by an expert. Besides, 
the information about a minimal duration of QS stage and 
a maximal duration of breaks, which can happen during 
QS, are used to improve the segmentation accuracy. 

In our experiments, a threshold was adapted to an 
EEG recording as follows. First, we counted the deviation 
of samples, dk, k=1, ..., K, in a window sliding over an EEG

recording, where K=Ent (N–W)
                 L

 is the number of windows

counted in an EEG, and L is the window shift step. Then 
we counted a probability distribution histogram, pi, i=1, ..., 
M, over the deviation values vi, where M is the number of 
bins in the histogram. Namely, the probabilities pi are the 
portions of samples whose deviation values are between vi 
and vi+1. Thus, given a probability P0, we can find a bin M0: 

M0

Σ pi P0, M0≤M,
i=1

and then choose a corresponding deviation interval, 
whose center is defined as the desired threshold. In this 
context, probability P0 is normally associated with a prior 
on the frequency of an event detected by the segmenta-
tion technique. 

In our experiments on EEG with the labeled QS stages, 
we have set P0=0.5 to reflect the fact that the QS intervals 
represent, on average, a half of an EEG recording. The 
best accuracy of segmentation was achieved when the 
maximal duration of QS break intervals was set equal to 
one min. The minimal duration of QS intervals was set to 
seven min to enable segmenting QS intervals fragmented 
at the beginning and at the end of an EEG recording.

The QS segmentation of an EEG is illustrated in Figu- 
re 1. The upper plot shows the EEG as the solid line. The 
dashed line in this plot shows the detected QS stages. 
The second plot shows the amplitude artifacts which were 
detected during the QS stages. The third plot shows the 
EEG cleaned from the artifacts. The lower plot illustrates 
the process of thresholding detection of QS stages in the 
clean EEG. The dashed line in the third plot shows the re-
sult of QS detection. As the segmentation is made on the 
clean EEG, finally we extend the duration of sleep stages 
to the artifacts removed from the raw EEG. The resultant 
QS labels are shown in the upper plot as the dashed line.

The upper plot shows that the QS stages have been 
properly segmented despite the high level of artifacts 
shown to be detected in the second plot. The window du-
ration W and shift L were set to 30 s and 1.5 s, respectively. 

The labeled QS and AS intervals were used for ex-
tracting EEG features for classification of brain maturity 
within the methodology of Bayesian averaging over DT 
models. The details of implementation of the Bayesian 
method can be found in [17].

Results and Discussion. After cleaning and 
segmentation, the EEG data were represented by 
9 features, namely the spectral powers in the six frequency 
bands, (1) Subdelta, (2) Delta, (3) Theta, (4) Alpha, 
(5) Beta, and (6) Beta2 (features 1–6), and three features 
of EEG discontinuity, described in [17]. The spectral powers 
have been computed with fast Fourier transform over 6-s 
epochs, which then were averaged within each band in 
order to represent an EEG by a six-element vector. The 
artifacts were detected and removed, and the sleep stages 
in each EEG were segmented into QS and AS intervals.

Table 1 shows the rates of artifacts removed from the 
QS and AS intervals as well as from the whole EEG. This 
rate includes EEG samples which have been detected as 
artifacts within the proposed segmentation technique. 
The artifact rates are shown with the mean and 2σ inter-
vals counted over the EEG recordings. We can observe 
that the rate of artifacts detected in the QS intervals is 
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more than twice higher than that in the AS intervals. The 
second plot in Figure 1, which shows the labeled artifacts 
in the raw EEG, confirms that the artifact rate in the QS 
intervals is higher than that in the AS intervals. 

Table 1
Artifact rates in the sleep stages

Sleep stage Rate
QS 0.12±0.21
AS 0.05±0.07
QS and AS 0.09±0.13

In the first two experiments with the Bayesian classi-
fication, we used the features extracted from the QS and 
AS intervals. The third experiment has been run with the 
features extracted from the whole, unsegmented EEG in 
order to compare the importance of features within the 
Bayesian classification. 

Table 2 shows the accuracy of the Bayesian classifi-
cation obtained with the above settings within a 10-fold 
cross validation for the features extracted from the QS 
and AS stages as well as from the whole EEG. The accu-
racy is evaluated within three intervals of weeks post-con-
ception commonly used by the EEG experts.

Table 2
Accuracy of assessment for 10 groups  

within three intervals

Sleep stage Performance, %, week intervals Entropy0 ±1 ±2
QS 25.2±7.4 64.8±8.8 85.5±8.3 206.1±11.7
AS 26.7±9.9 60.8±10.0 82.5±7.1 210.6±11.8

Both 28.8±5.5 63.9±9.0 82.9±7.5 207.1±9.8

The performance is shown by the mean accuracy 
within 2σ standard deviation intervals. The entropy E is 
counted over an ensemble of K DT models, in order to 

estimate the uncertainty of the ensemble: 
K
E= Σ pi log2(pi),
i=1

where pi are the class posterior probabilities provided by 
the DT models.

Figure 2 shows the importance of features extracted 
from the QS and AS intervals. Observing the results, we 
see that the most important feature extracted from the 
AS intervals is related to the discontinuity (feature 7). In 
the QS intervals, the powers in the Delta, Theta and Alpha 
bands are also shown to be important. 

Conclusions. In this paper, we explored the 
importance of EEG features used for the newborn 
brain maturity assessment within the methodology of 
Bayesian averaging over decision tree (DT) models. 
This methodology has been shown providing the most 
accurate estimates of class posterior distribution, while 
the use of DT models has been shown capable of finding 
features making valuable contribution to the assessment. 

Based on clinical observations that the EEG features in 
various sleep stages are different, we assumed that there 
exist EEG intervals which provide the most informative 
features, which can be extracted from intervals of quiet sleep. 

Fig. 2. Mean and standard deviation of importance of features 
extracted from AS and QS stages

For testing this assumption, the EEGs were 
automatically segmented into the quiet and active sleep 
intervals. Before the segmentation, the EEGs were 
automatically cleaned from the amplitude artifacts. Both 
the segmentation and artifact detection have been made 
with the standard adaptive thresholding techniques. For 
each sleep stage, the segmented EEG intervals have 
been split into epochs and represented by the standard 
spectral bands. Finally, each band has been averaged 
over the epochs to represent the EEG intervals by a 
vector entry. 

In our experiments, we used the EEG data recorded 
from newborns of age 36 to 45 weeks post-conception. 
We found that the EEG features extracted from the 
quiet sleep intervals have provided more accurate 
age classification in the comparison with the features 
extracted from the active sleep intervals. 

The above allows us to conclude that intervals of the 
quiet sleep in EEG are more informative for the newborn 
brain maturity assessment within the methodology of 
Bayesian averaging over DT models. Obviously, this result 
is conditioned on the methods chosen in our research 
for segmenting EEG into sleep intervals, extracting 
features from the segmented EEG intervals as well as for 
classification of age-related patterns. 
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The paper presents an analysis of the relationship between the duration of cholecalciferol supplementation at 
different doses and the 25(ОН)D concentration in infants during their first year of life. We evaluated 496 infants aged 
1 month to 12 months who were divided into four groups depending on the duration of vitamin D supplementation: up 
to 8 weeks, 8–15 weeks, 16–24 weeks, and over 24 weeks.


