The emergence of new imaging techniques in clinical and experimental practice has significantly expanded the possibilities for studying the mechanisms of osseointegration [1, 2]. At the same time, the possibilities of reparative bone formation of postoperative jaw defects, including modeling of bone loss processes under conditions of chronic stress or osteoporosis, are far from being
exhausted [3, 4]. Considering the current practice of using implant treatment in conditions of increasing life expectancy of the population, the comorbidity component and financial capabilities of patients, it seems essential to comprehensively study the effectiveness of osseointegrating processes when using various options for metabolic therapy [5, 6].

The study aimed to evaluate radiographic stimulation of the metabolic stimulation of bone regeneration of postoperative defects after tooth extraction in animals under conditions of experimental chronic stress.

Material and Methods. The experiment included 78 mature laboratory rats weighing 180–200 g, in 60 of which the author’s stress-inducing device (SID) (patent RU 182498 U1, August 21, 2018) was used for 30 consecutive days, which is a kappa for the formation of non-physiological occlusion of the jaws. All animals are divided into three groups. The first group consisted of animals of the comparison group without a stress-inducing device (terms of withdrawal from the experiment here and below, in all groups are the same – 15, 30, 60 and 90 days, n=18); the second (control) group – animals with a (SID), which were injected daily with saline intraperitoneally, n=60; the third (main) group – animals with SID, which were daily intraperitoneally injected with ethylmethylhydroxypyridine succinate (Mexidol (Pharmasoft, Russia), 50 mg/kg of body weight), n=20. During the experiment, all rats were under standardized conditions with a standard diet, a natural light/dark cycle (with a light duration of at least 16 hours) and had free access to water and food at a room temperature of 22–23 °C. Experimental animals were kept under conditions of experimental chronic stress.

The experiment included 78 mature laboratory rats weighing 180–200 g, in 60 of which the author’s stress-inducing device (SID) (patent RU 182498 U1, August 21, 2018) was used for 30 consecutive days, which is a kappa for the formation of non-physiological occlusion of the jaws. All animals are divided into three groups. The first group consisted of animals of the comparison group without a stress-inducing device (terms of withdrawal from the experiment here and below, in all groups are the same – 15, 30, 60 and 90 days, n=18); the second (control) group – animals with a (SID), which were injected daily with saline intraperitoneally, n=60; the third (main) group – animals with SID, which were daily intraperitoneally injected with ethylmethylhydroxypyridine succinate (Mexidol (Pharmasoft, Russia), 50 mg/kg of body weight), n=20. During the experiment, all rats were under standardized conditions with a standard diet, a natural light/dark cycle (with a light duration of at least 16 hours) and had free access to water and food at a room temperature of 22–23 °C.

The study aimed to evaluate radiographic stimulation of the metabolic stimulation of bone regeneration of postoperative defects after tooth extraction in animals under conditions of experimental chronic stress.

Material and Methods. The experiment included 78 mature laboratory rats weighing 180–200 g, in 60 of which the author’s stress-inducing device (SID) (patent RU 182498 U1, August 21, 2018) was used for 30 consecutive days, which is a kappa for the formation of non-physiological occlusion of the jaws. All animals are divided into three groups. The first group consisted of animals of the comparison group without a stress-inducing device (terms of withdrawal from the experiment here and below, in all groups are the same – 15, 30, 60 and 90 days, n=18); the second (control) group – animals with a (SID), which were injected daily with saline intraperitoneally, n=60; the third (main) group – animals with SID, which were daily intraperitoneally injected with ethylmethylhydroxypyridine succinate (Mexidol (Pharmasoft, Russia), 50 mg/kg of body weight), n=20. During the experiment, all rats were under standardized conditions with a standard diet, a natural light/dark cycle (with a light duration of at least 16 hours) and had free access to water and food at a room temperature of 22–23 °C.

The study aimed to evaluate radiographic stimulation of the metabolic stimulation of bone regeneration of postoperative defects after tooth extraction in animals under conditions of experimental chronic stress.

Material and Methods. The experiment included 78 mature laboratory rats weighing 180–200 g, in 60 of which the author’s stress-inducing device (SID) (patent RU 182498 U1, August 21, 2018) was used for 30 consecutive days, which is a kappa for the formation of non-physiological occlusion of the jaws. All animals are divided into three groups. The first group consisted of animals of the comparison group without a stress-inducing device (terms of withdrawal from the experiment here and below, in all groups are the same – 15, 30, 60 and 90 days, n=18); the second (control) group – animals with a (SID), which were injected daily with saline intraperitoneally, n=60; the third (main) group – animals with SID, which were daily intraperitoneally injected with ethylmethylhydroxypyridine succinate (Mexidol (Pharmasoft, Russia), 50 mg/kg of body weight), n=20. During the experiment, all rats were under standardized conditions with a standard diet, a natural light/dark cycle (with a light duration of at least 16 hours) and had free access to water and food at a room temperature of 22–23 °C.

By the 15th day of the experiment, in all groups, against the background of a bone defect, the inner (lingual) wall of the socket of the extracted tooth is visible (Fig. 1A). By the 30th day after the operation, in most cases, the process of bone rarefaction is determined on radiographs (Fig. 1B). However, in the control group with SID, the alveolar wall appears to be relatively less dense than in the main group. Their osteopenia has a pronounced small-focal character. By the end of the 60th day after the operation, the areas of the newly formed bone tissue in the main group become more pronounced (Fig. 1C), and the rarefaction foci decrease and completely disappear in the 90th day (Fig. 1D).

Radiologically, the beginning of the formation of reparative osteoid tissue has not been determined. The first signs of activation of the post-operative bone defect replacement process were determined radiologically only 15 days after the operation. Among the first two signs of reparative bone formation detected by the end of the 30th day in 25% of third-group animals and 15.8% of control group animals by the 60th day, a decrease in the clarity of the bone defect boundaries should be distinguished (54.6% of cases) and the appearance of a thin shading strip along the edge of the defect (45.4% of cases). At the same time, osteoidal shadow develops most intensively on the side of the rear and lower edges of the fault. As osteoid tissue grows and matures, a bone structure appears in the form of a thin network of bone bundles, first detected only at the periphery of the defect. Subsequent X-ray studies reveal how the thin structure of the sponge fills the edge of the defect. However, the skeletal pattern is also amplified in the center due to reparative bone formation from the preserved inner (linguistic) wall of the alveolus.

It should be noted that in the main group, at the end of the 30th day after the beginning of the experiment, the edges of the defect on radiographs appeared to thicken; by the 60th day, this type of thickening increased in the form of a linear shadow bordering the defect contour. The width of the sclerosis band gradually increased (up to 30–60 days after surgery) and then changed and progressively became thinner and disappeared. A similar process in the control group proceeded for a longer time, and by the end of the 90th day, the bone defect was not filled with bone tissue, on radiographs, a narrow strip of sclerosis is still visible against the background of an unchanged bone pattern in the adjacent areas.

Analyzing the ratio of the average volume of newly formed bone (mm3) and mineral bone density (mg/cm2) [7] in the control and main groups 15, 30, 60 and 90 days after surgery, it was found that in the main group regenration increases the volume and mineral density of the newly formed bone (Fig. 2) more than in the control groups, acquiring the most considerable statistically significant differences ($p<0.05$) by the 30th and 60th days (by the volume of newly formed bone) and by the 90th day (by mineral density of regeneration).
The fate of the cortical plate of the rosette walls, preserved during the operation, is different. Most often, its complete restructuring was observed during the process of reparative bone formation, which was confirmed radiologically by the disappearance of the shadow. In these cases, an uneven thinning was observed 15 and 30 days after the X-ray operation, followed by fragmentation of the cortical plate and its gradual disappearance. Some fragments in the form of linear shadows were visualized on the 90th day, but most often, the restructuring process took place within two months of the first signs of these changes. In other cases, the compact well plate was not restored.

In both control and primary groups, with full healing of the postoperative defects by the 90th day, in most cases, the altitude of the alveolar process did not decrease.

Fig. 1. Changes in the X-ray examination of the processes of bone tissue regeneration in the socket of the removed molar

Fig. 2. The ratio of the average volume of newly formed bone tissue (A, mm³) and the average values of the mineral density of the newly formed bone tissue (B, mg/cm³) at different periods of observation in the control (second) group and the main (third) group. *

* – differences between groups are statistically significant, p<0.05
only in 15% of the control group after healing, a marginal bone defect due to the resorption of the top of the intact orifice wall. At the same time, the cortical plate of the nest of the adjacent intact tooth (the second molar) began to move from the tooth neck to the healing defect, forming a funnel-shaped extension of the pericoronal line. Externally, this extension resembled a pathological bone pocket in generalized periodontitis [8, 9]. However, neither radiographic nor clinical signs of periodontitis were observed, and the described changes could occur only as a result of a decrease in the volume of the newly formed bone in a certain period of its maturation.

Conclusions. Thus, the X-ray pattern of bone regeneration of postoperative defects in the SiD experiment indicates a more effective and complete recovery of the alveolar spine after tooth extraction in animals, intraperitoneal succinate with ethylmethylhydroxypyridine. X-ray analysis of bone regeneration confirmed complete bone healing within 30 and 60 days, filling of trabecular bone defect, quantitative (in mm³) and qualitative (mg/cm³) composition to provide forest function for newly formed vessels and nerves antihypoxic membrane protection activity [5, 6]. In the control groups, the wells were filled with pores and microspecies with fewer trabecular bones capable of supporting angiogenesis and neogenesis much later, only on the 90th day of observation.

Informed consent: the study was conducted in full compliance with the requirements of the Helsinki Declaration of the World Medical Association (1964), the «International Recommendations for Conducting Biomedical Research using Animals» (1985), the Rules of Laboratory Practice in the Russian Federation (Order of the Ministry of Health of the Russian Federation No. 267 of 19.06.2003) and the positive conclusion of the local ethics committee.

Disclosures: The authors declare no conflict of interest.

References

About authors:
Sirak Sergey Vladimirovich, MD, PhD, Professor, Head of the Department of dentistry; tel.: +78652350551; e-mail: sergejsirak@yandex.ru; https://orcid.org/0000-0001-6193-8746

Shchetinin Evgeny Vyacheslavovich, MD, PhD, Professor, Head of the Department of pathophysiology; tel.: +78652352524; e-mail: ev.cliph@rambler.ru; https://orcid.org/0000-0001-6193-8746

Romanenko Roman Gennadievich, Assistant of the Department of dentistry; tel.: +78652350551; e-mail: sergejsirak@yandex.ru