logo
Medical news
of the North Caucasus
Scientific journal
Mass media registration certificate dated December 7, 2006.
Series ПИ #ФС 77-26521.
Federal service for surveillance over non-violation of the legislation in the sphere of mass communications and protection of cultural heritage.
ISSN 2073-8137
rus
русский
eng
english

Site search



Correspondence address
310 Mira Street, Stavropol, Russia, 355017

Tel
+7 8652 352524; +7 8652 353229.

Fax
+7 8652 352524.

E-mail
medvestnik@stgmu.ru

Change in proliferative processes in thymus of rats affected by antenatal and postnatal influence of the dichlorodiphenyltrichlorethane endocrine disraptor

[Experimental medicine]
Natalya Valentinovna Yaglova; Elina Soslanovna Tsomartova; Sergey Stanislavovich Obernikhin; Svetlana Vladimirovna Nazimova; Valentin Vasilievich Yaglov; Elizaveta Chereshneva; Marina Ivanova; Sergey Kuznetsov;

A comprehensive immunohistochemical and radioisotope study of the proliferation of thymocytes in male Wistar rats that developed under the conditions of antenatal and postnatal exposure to low doses of dichlorodiphenyl trichloroethane endocrine disruptor was carried out at different periods of postnatal ontogenesis. It was found that the proliferation of thymocytes in newborn rats and rats in the suction period is lower than the control values. By puberty, the natural rate of decrease in proliferative activity becomes less pronounced, as a result of which proliferative processes in the thymus parenchyma proceed more actively, which indicates a change in the program of postnatal organ development by the endocrine disruptor.

Download

References:
1. Sifakis S., Androutsopoulos V. P., Tsatsakis A. M., Spandidos D. A. Human exposure to endocrine disrupting chemicals: effects on the male and female reproductive systems. Environ. Toxicol. Pharmacol. 2017;51:56-70. https://doi.org/10.1016/j.etap.2017.02.024
2. Street M. E., Angelini S., Bernasconi S., Burgio E., Cassio A. [et al.]. Current knowledge on endocrine disrupting chemicals (EDCs) from animal biology to humans, from pregnancy to adulthood: highlights from a national Italian meeting. Int. J. Mol. Sci. 2018;19:1647. https://doi.org/10.3390/ijms19061647
3. Horan T. S., Marre A., Hassold T., Lawson C., Hunt P. A. Germline and reproductive tract effects intensify in male mice with successive generations of estrogenic exposure. PLoS Genet. 2017;13:e1006885. https://doi.org/10.1371/journal.pgen.1006885
4. Gore A. C., Chappell V. A., Fenton S. E., Flaws J. A., Nadal A. [et al.]. EDC-2, The Endocrine Society’s Second Scientific Statement on Endocrine-Disrupting Chemicals. Endocr. Rev. 2015;36:E1-E150. https://doi.org/10.1210/er.2015-1010
5. Heindel J. J., vom Saal F. S., Blumberg B., Bovolin P., Calamandrei G. [et al.]. Parma consensus statement on metabolic disruptors. Environ. Health. 2015;14;54. https://doi.org/10.1186/s12940-015-0042-7
6. Verner M.-A., Chevrier J., Ngueta J., Rauch S., Bornman R., Eskenazi B. Early-life exposure to p,p′-DDT and p,p′-DDE in South African children participating in the VHEMBE study: An assessment using repeated serum measurements and pharmacokinetic modeling. Environment International. 2018;119;478-484. https://doi.org/10.1016/j.envint.2018.07.010
7. Yaglova N. V., Yaglov V. V. Cytophysiological Changes in the Follicular Epithelium of the Thyroid Gland after Long-Term Exposure to Low Doses of Dichlorodiphenyltrichloroethane (DDT). Byulleten’ ehksperimental’noj biologii i mediciny. – Bulletin of experimental biology and medicine. 2017;162(5):699-702. (In Russ.)].
8. Yaglova N. V., Tsomartova D. A., Yaglov V. V. Differences in Production of Adrenal Steroid Hormones in Pubertal Rats Exposed to Low Doses of the Endocrine Disruptor DDT during Prenatal and Postnatal Development Biochemistry (Moscow) Supplement Series B: Biomedicinskaya himiya. – Biomedical Chemistry. 2018;12(1):80-86. (In Russ.)]. https://doi.org/10.1134/S1990750818010122
9. Yaglova N. V., Timokhina E. P., Yaglov V. V.. Effects of Low-Dose Dichlorodiphenyltrichloroethane on the Morphology and Function of Rat Thymus. Byulleten’ ehksperimental’noj biologii i mediciny. – Bulletin of Experimental Biology and Medicine. 2013;155(5):701-704. (In Russ.)]. https://doi.org/10.1007/s10517-013-2230-1
10. World Health Organization. Pesticide residues in food –2016 evaluations. Part II – Toxicological. Geneva: WHO and FAO, 2017.
11. Yaglova N. V., Obernikhin S. S. Morphofunctional changes in thymic offspring of mice in the period of puberty and in adults after a single immunostimulatory effects of the parent organism in the early stages of pregnancy. Immunologiya. – Immunology. 2013;34(1):15-19. (In Russ.).
12. Skinner M., Ben Maamar M., Sadler‑Riggleman I., Beck D., Nilsson E. [et al.]. Alterations in sperm DNA methylation, non‑coding RNA and histone retention associate with DDT‑induced epigenetic transgenerational inheritance of disease. Epigenetics and Chromatin. 2018;11:8. https://doi.org/10.1186/s13072-018-0178-0
13. Yaglova N. V., Yaglov V. V., Timokhina Е. P., Nazimova S. V., Obernikhin S. S. Rat Thymocyte Apoptosis and Proliferation Variations in Chronic Exposure to Low-Dose Dichlorodiphenyltrichloroethane. Sovremennye Tehnologii v Medicine. – Modern technologies in medicine. 2017;9(1):62-66. (In Russ.). https://doi.org/10.17691/stm2017.9.1.07

Keywords: thymus, endocrine disrupter, DDT, proliferation


Founders:
Stavropol State Medical Academy
Pyatigorsk State Research Institute of Balneotherapeutics
Pyatigorsk State Pharmaceutical Academy