logo
Medical news
of the North Caucasus
Scientific journal
Mass media registration certificate dated December 7, 2006.
Series ПИ #ФС 77-26521.
Federal service for surveillance over non-violation of the legislation in the sphere of mass communications and protection of cultural heritage.
ISSN 2073-8137
rus
русский
eng
english

Site search



Correspondence address
310 Mira Street, Stavropol, Russia, 355017

Tel
+7 865 2352511, +7 865 2353229.

E-mail
medvestnik@stgmu.ru

The role of gut microbiota in the development of obesity and its metabolic profile (Part II)

[Reviews]
Natalia Volkova; Liliya Ganenko; Sergey Golovin;

The number of patients with obesity and cardiometabolic disorders associated with it, such as type 2 diabetes mellitus, dyslipidemia and arterial hypertension, is constantly increasing. Research findings suggest that obese patients are a very diverse group, since the presence of obesity-related metabolic disorders varies widely. A number of obese patients have no metabolic abnormalities at all; such an obesity phenotype is currently known as metabolic neutral obesity (MNO). The increase in the prevalence of obesity and metabolic disorders cannot be associated solely with changes in the human genome, eating habits or a decrease in physical activity. In addition to the generally accepted reasons, one of the factors affecting the homeostasis of the energy of a microorganism through several proposed mechanisms is the intestinal microbiota. There are quantitative and qualitative differences in the intestinal microbiota in animals and people with obesity compared with thin ones. A review of current literature summarizes the experimental and clinical data on the role of the intestinal microbiota and its changes in metabolic disorders, the mechanisms by which the intestinal microbiota interacts with the energy metabolism of the macroorganism, and also characterizes the potential role of prebiotics and probiotics in the development of not only obesity, but also its metabolic profile.

Download

References:
1. Cani P. D., Possemiers S., Van de Wiele T., Guiot Y., Everard A. [et al.]. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut. 2009;58(8):1091-1103. https://doi.org/10.1136/gut.2008.165886
2. Obesity and overweight Available at: http://www.who.int/ mediacentre/factsheets/fs311/en/. Accessed 14 Feb 2017.
3. Smith K. B., Smith M. S. Obesity statistics. Prim. Care. 2016;43:121-135. http://doi.org/10.1016/j.pop.2015.10.001
4. Volkova N. I., Ganenko L. А., Porksheyan M. I. Metabolic healthy obesity, what do we know about it? Meditsinskij vestnik Yuga Rossii. – Medical Herald of the South of Russia. 2017;8(3):6-16. (In Russ.). https://doi.org/10.21886/2219-8075-2017-8-3-6-16
5. Velho S., Paccaud F., Waeber G., Vollenweider P., Marques-Vidal P. Metabolically healthy obesity: different prevalences using different criteria. Eur. J. Clin. Nutr. 2010;64(10):1043-1051. https://doi.org/ 10.1038/ejcn.2010.114
6. Muhammad Jaffar Khan, Konstantinos Gerasimidis, Christine Ann Edwards, M. Guftar Shaikh. Role of Gut Microbiota in the Aetiology of Obesity: Proposed Mechanisms and Review of the Literature. J. Obes. 2016;2016: 7353-7642. https://doi.org/10.1155/2016/7353642
7. Duranti S., Ferrario C., van Sinderen D., Ventura M., Turroni F. Obesity and microbiota: an example of an intricate relationship. Genes & Nutrition. 2017;15:12-18. https://doi.org/ 10.1186/s12263-017-0566-2
8. Dahiya D. K., Renuka, Puniya M., Shandilya U. K., Dhewa T., Kumar N. [et al.]. Gut Microbiota Modulation and Its Relationship with Obesity Using Prebiotic Fibers and Probiotics: A Review. Front. Microbiol. 2017;8:563. https://doi.org/10.3389/fmicb.2017.00563
9. Kasubuchi M., Hasegawa S., Hiramatsu T., Ichimura A., Kimura I. Dietary gut microbial metabolites, short-chain fatty acids, and host metabolic regulation. Nutrients. 2015;7(4):2839-2849. https://doi.org/10.3390/nu7042839
10. Karlsson F. H., Tremaroli V., Nookaew I., Bergström G., Behre C. J., Faberberg B. [et al.]. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature. 2013;498:99-103. https://doi.org/10.1038/nature12198
11. Qin J., Li Y., Cai Z., Li S., Zhu J. [et al.]. A metagenome- wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490:55-60. https://doi.org/10.1038/nature11450
12. Hartstra A. V., Bouter K. E., Bäckhed F., Nieuwdorp M. Insights into the role of the microbiome in obesity and type 2 diabetes. Diabetes Care. 2015;38(1):159-165. https://doi.org/ 10.2337/dc14-0769
13. Cani P. D., Amar J., Iglesias M. A., Poggi M., Knauf C. [et al.]. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes Metab. Res. 2007;56:1761-1772. https://doi.org/10.2337/db06-1491
14. Louis S., Tappu R. M., Damms-Machado A., Huson D. H., Bischoff S. C. Characterization of the gut microbial Community of Obese Patients Following a weight-loss intervention using whole Metagenome shotgun sequencing. PLoS One. 2016;11(2):e0149564. https://doi.org/10.1371/journal.pone.0149564
15. Chevalier C., Stojanović O., Colin D. J., Suarez-Zamorano N., Tarallo V. [et al.]. Gut Microbiota orchestrates energy homeostasis during cold. Cell. 2015;163(6):1360-1374. https://doi.org/10.1016/j.cell.2015.11.004
16. Maenhaut N., Van de Voorde J. Regulation of vascular tone by adipocytes. BMC Medicine. 2011;9: article 25. https://doi.org/ 10.1186/1741-7015-9-259
17. De Silva A., Bloom S. R. Gut hormones and appetite control: a focus on PYY and GLP-1 as therapeutic targets in obesity. Gut Liver. 2012;6:10-20. https://doi.org/10.5009/gnl.2012.6.1.10
18. Steinert R., Beglinger C., Langhans W. Intestinal GLP-1 and satiation: from man to rodents and back. Int. J. Obes. 2016;40:198-205. https://doi.org/10.1038/ijo.2015.172
19. Boulangé C. L., Neves A. L., Chilloux J., Nicholson J. K., Dumas M. E. Impact of the gut microbiota on inflammation, obesity, and metabolic disease. Genome Med. 2016;20:8(1):42. https://doi.org/10.1186/s13073-016-0303-2
20. Aron-Wisnewsky J., Gaborit B., Dutour A., Clement K. Gut microbiota and non-alcoholic fatty liver disease: new insights. Clin. Microbiol. Infect. 2013;19(4):338-348. https://doi.org/10.1111/1469-0691.12140
21. Million M., Lagier J. C., Yahav D., Paul M. Gut bacterial microbiota and obesity. Clin. Microbiol. Infect. 2013;19(4):305- 313. https://doi.org/10.1111/1469-0691.12172
22. Million M., Maraninchi M., Henry M., Armougom F., Richet H. [et al.]. Obesity-associated gut microbiota is enriched in Lactobacillus reuteri and depleted in Bifidobacterium animalis and Methanobrevibacter smithii. Int. J. Obes. 2012;36(6):817-825. https://doi.org/10.1038/ijo.2011.153
23. Schwiertz A., Taras D., Schäfer K., Beijer S., Bos N. A. [et al.]. Microbiota and SCFA in lean and overweight healthy subjects. Obesity (Silver Spring). 2010;18(1):190-195. https://doi.org/10.1038/oby.2009.167
24. Turnbaugh P. J., Hamady M., Yatsunenko T., Cantarel B. L., Duncan A. [et al.]. A core gut microbiome in obese and lean twins. Nature. 2009;457(7228):480-484. https://doi.org/ 10.1038/nature07540
25. Million M., Angelakis E., Maraninchi M., Henry M., Giorgi R. [et al.]. Correlation between body mass index and gut concentrations of Lactobacillus reuteri, Bifidobacterium animalis, Methanobrevibacter smithii and Escherichiacoli. Int. J. Obes. (Lond). 2013;37(11):1460-1466. https://doi.org/10.1038/ijo.2013.20
26. Zuo H. J., Xie Z. M., Zhang W. W., Li Y. R., Wang W. [et al.]. Gut bacteria alteration in obese people and its relationship with gene polymorphism. World J. Gastroenterol. 2011;17(8):1076-1081. https://doi.org/10.3748/wjg.v17.i8.1076
27. Goodrich J. K., Waters J. L., Poole A. C., Sutter J. L., Koren O. [et al.]. Human genetics shape the gut microbiome. Cell. 2014;159(4):789-799. https://doi.org/10.1016/j.cell.2014.09.053
28. Rial S. A., Karelis A. D., Bergeron K. F., Mounier C. GutMicrobiota and Metabolic Health: The Potential Beneficial Effects of a Medium Chain Triglyceride Diet in Obese Individuals. Nutrients. 2016;8(5):281. https://doi.org/10.3390/nu8050281
29. Serino M., Luche E., Gres S., Baylac A., Bergé M. [et al.]. Metabolic adaptation to a high-fat diet is associated with a change in the gut microbiota. Gut. 2012;61(4):543-553. https://doi.org/10.1136/gutjnl-2011-301012
30. Arinell K., Sahdo B., Evans A. L., Arnemo J. M., Baandrup U., Frobert O. Brown bears (Ursus arctos) seem resistant to atherosclerosis despite highly elevated plasma lipids during hibernation and active state. Clin. Transl. Sci. 2012;5(3):269-272.
https://doi.org/10.1111/j.1752-8062.2011.00370.x
31. Dewulf E. M., Cani P. D., Neyrinck A. M., Possemiers S., Van Holle A. [et al.]. Inulin-type fructans with prebiotic properties counteract GPR43 overexpression and PPAR gamma-related adipogenesis in the white adipose tissue of high-fat diet-fed mice. J. Nutr. Biochem. 2011;22(8):712- 722. https://doi.org/10.1016/j.jnutbio.2010.05.009
32. Rodes L., Khan A., Paul A., Coussa-Charley M., Marinescu D. [et al.]. Effect of probiotics Lactobacillus and Bifidobacterium on gut-derived lipopolysaccharides and inflammatory cytokines: an in vitro study using a human colonic microbiota model. J. Microbiol. Biotechn. 2013;23(4):518- 526. https://doi.org/10.4014/jmb.1205.05018
33. Santos Rocha C., Lakhdari O., Blottière H. M., Blugeon S., Sokol H. [et al.]. Anti-inflammatory properties of dairy lactobacilli. Inflamm. Bowel. Dis. 2012;18(4):657- 666. https://doi.org/10.1002/ibd.21834
34. Fåk F., Bäckhed F. Lactobacillus reuteri prevents dietinduced obesity, but not atherosclerosis, in a strain dependent fashion in Apoe-/- mice. PLoS One. 2012;7(10):e46837. https://doi.org/10.1371/journal.pone.0046837
35. Diaz-Ropero M. P., Martin R., Sierra S., Lara-Villoslada F., Rodriguez J. M. [et al.]. Two Lactobacillus strains, isolated from breast milk, differently modulate the immune response. J. Appl. Microbiol. 2007;102(2):337-343. https://doi.org/10.1111/j.1365-2672.2006.03102.x
36. Dao M. C., Everard A., Aron-Wisnewsky J., Sokolovska N., Prifti E. [et al.]. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut. 2016;65(3):426-436. https://doi.org/10.1136 / gutjnl-2014-308778

Keywords: intestinal microbiota, obesity, metabolically neutral obesity, short-chain fatty acids, prebiotic, probiotics


Founders:
Stavropol State Medical Academy
Pyatigorsk State Research Institute of Balneotherapeutics
Pyatigorsk State Pharmaceutical Academy