logo
Medical news
of the North Caucasus
Scientific journal
Mass media registration certificate dated December 7, 2006.
Series ПИ #ФС 77-26521.
Federal service for surveillance over non-violation of the legislation in the sphere of mass communications and protection of cultural heritage.
ISSN 2073-8137
rus
русский
eng
english

Site search



Correspondence address
310 Mira Street, Stavropol, Russia, 355017

Tel
+7 865 2352511, +7 865 2353229.

E-mail
medvestnik@stgmu.ru

Influence of au to- and xenogenic fibroblastes and dermal equivalent on macrophage content in granulative tissue of ishemic cutaneus wound on the 12 da y of regenerative histogenesis

[Original research] [Experimental medicine]
Grigory Demyashkin; Elena Yuryevna Shapovalova; Tatiana Anatolyevna Boyko; Yury Gennadievich Baranovsky; Marina Morozova; Alexey Gennadievich Baranovsky; Elizaveta Sergeevna Ageeva;

The presence of macrophages in the tissues of the regenerating model of skin ischemic wounds was determined on the mature C57/B1 mice after administration of auto- and xenogenic fibroblasts, and also after transplantation of the dermal equivalent with xenogenic fibroblasts. Macrophages were identified by the presence of the CD68 antigen by monoclonal antibodies by immunohistochemistry.On the 12th day of healing the experimental ischemic wound, the histological structure of the biopsy specimen after cutting the wound with auto- and xenogenic fibroblasts on the DMEM F12 growth medium and after transplantation of the dermal equivalent with xenogenic differ from the control by the level of development of the epidermis and statistically significant decrease in the macrophage index.The results obtained indicate a statistically significant reduction in the duration of inflammation and earlier and active formation of granulation tissue when using autofibroblasts.

Download

References:
1.Odincova I. A., Danilov R. K., Gololobov V. G., Hilova Ju. K., Rusakova S. Je. [et al.]. Features of regenerative histogenesis in the healing of cutaneous and muscular wounds and bone fractures. Morfologija. – Morphology. 2016;149(3):153-154. (In Russ.)].
2. Fedorov D. N., Ivashkin A. N., Vasilev A. V. Morphological and immunohistochemical characteristics of reparative processes in long-term non-healing wounds. Arhiv patologii. – Archive of pathology. 2002;(1):8-11. (In Russ.).
3. Alekseeva N. T., Gluhov A. A., Ostroushko A. P. The role of fibroblastic differential in the process of wound healing. Vestnik jeksperimentalnoj i klinicheskoj hirurgii. – Journal of
experimental and clinical surgery. 2012;5(3):601-608. (In Russ.).
4. Gluhov A. A., Aralova M. V. Pathophysiology of long-term non-healing wounds and modern methods of stimulation of the wound process. Novosti hirurgii. Surgery news. 2015;23(6):673-79. (In Russ.). https://doi.org/10.18484/2305-0047.2015.6.673
5. Odincova I. A., Danilov R. K., Gololobov V. G., Hilova Yu. K., Rusakova S. Ye. [et al.]. Wound histogenesis: histological organization and process optimization. Morfologija. Morphology. 2014;145(3):147a. (In Russ.).
6. Singer N. G., Caplan A. I. Mesenchymal stem cells: mechanisms of inflammation. Annual Review of Pathology.2 011;6:457-478. https://doi.org/10.1146/annurev-pathol-0110-130230
7. Shaw T. J., Martin P. J. Wound repair at a glance. Journal of Cell Science. 2009;122(Pt 18):3209-13. https://doi.org/10.1242/jcs.031187
8. Meleshina A. V., Bystrova A. S., Rogovaya O. S., Vorotelyak
E. A. Tissue engineering skin constructs and the use of stem cells to create skin equivalents (review). Sovremennye tehnologii v medicine. Modern technologies in medicine.2017;9(1):198-218. (In Russ.).https://doi.org/10.17691/stm2017.9.1.24
9. Shapovalova Ye. Yu., Morozova M. N., Baranovskiy Yu. G., Boyko T. A., Baranovskiy A. G. Comparative characteristics of the fibrous composition of the rumen after the introduction of auto- and heterofibroblasts into the wound in mice. Zdorov’e i obrazovanie v XXI veke. The Journal of scientific articles «Health and Education Millennium». 2017;19(3):100-104. (In Russ.).
10. Baranovskiy Yu. G., Ilchenko F. N., Shapovalova E. Yu. Method for modeling trophic ulcers in laboratory mice in the experimental model. Vestnik neotlozhnoj i vosstanovitel’noj hirurgii. –Bulletin of urgent and recovery surgery. 2016;1(2):259-61. (In Russ.).
11. Andreev D. Yu., Abramova N. V., Blinova M. I., Pinaev G. P. ffectiveness of cutaneous plastics and dermal equivalent in the treatment of extensive ulcers of the tibia of mixed origin. Vestnik hirurgii imeni I. I. Grekova. – Bulletin of Surgery I. I. Grekov.2013;172(1):104-107. (In Russ.).
12. Singer A. J., Clark R. A. N. Cutaneous wound healing. The New England Journal of Medicine. 1999;341(10):738-746. https://doi.org/10.1056/NEJM199909023411006
13. Barron L., Wynn T. A. Fibrosis is regulated by Th2 and Th17 response and by dynamic interactions between fibroblasts and macrophages. American Journal of Physiology Gastrointestinal and Liver Physiology.2011;300(5):G723-728. https://doi.org/10.1152/ajpgi.00414.2010
14. Beanes S. R., Dang C., Soo C. Skin repair and scar formation: the central role of TGF-beta. Expert Reviews in Molecular Medicine.2003;5(8):1-22. https://doi.org/10.1017/S1462399403005817
15. Shapovalova E. Yu., Boyko T. A., Baranovskiy Yu. G., Morozova M. N., Barsukov N. P. [et al.]. Effects of fibroblast transplantation on the content of macrophages and the morphology of regenerating ischemic cutaneous wounds. International Journal of Biomedicine. 2017;7(4):302-306. https://doi.org/10.21103/Article7(4)_OA6
16. Eckes B., Nischt R., Krieg T. Cell-matrix interactions in dermal repair and scarring. Fibrogenesis Tissue Repair. 2010;3:4.https://doi.org/10.1186/1755-1536-3-4

Keywords: healing, skin, cellular technology, macrophage, dermal equivalent, fibroblast


Founders:
Stavropol State Medical Academy
Pyatigorsk State Research Institute of Balneotherapeutics
Pyatigorsk State Pharmaceutical Academy