logo
Medical news
of the North Caucasus
Scientific journal
Mass media registration certificate dated December 7, 2006.
Series ПИ #ФС 77-26521.
Federal service for surveillance over non-violation of the legislation in the sphere of mass communications and protection of cultural heritage.
ISSN 2073-8137
rus
русский
eng
english

Site search



Correspondence address
310 Mira Street, Stavropol, Russia, 355017

Tel
+7 8652 352524; +7 8652 353229.

Fax
+7 8652 352524.

E-mail
medvestnik@stgmu.ru

Change of parameters of the lipid peroxidation – antioxidant defense system in the rats of the wag line under immobilization stress

[Original research] [Experimental medicine]
Lyubov Ilinichna Kolesnikova; Larisa Romanovna Kolesnikova; Marina Aleksandrovna Darenskaya; Larisa Viktorovna Natyaganova; Lyudmila Anatolevna Grebenkina; Leonid Innokentievich Korytov; Sergey Ivanovich Kolesnikov;

On mature male rats, the Wistar Albino Glaxo (WAG) lines reproduced the stages of the «stress reaction»: anxiety and resistance. During the evaluation of the experimental data, an increased intensity of the lipid peroxidation at the stage of anxiety and resistance in the form of an increase in the concentration of intermediate products, KD and CT, with their more intensive accumulation in the second stage was shown. The reactions of the antioxidant defense system is differed directions depending on the stage of stress: an increase in SOD activity and the level of retinol in the anxiety stage and an increase in SOD activity with a marked decrease in the total antioxidant activity and concentration of α-tocopherol during the resistance stage. Thus, changes in the system of LPO-AOD in animals at a late stage of post-stress can be interpreted as a decrease in the activity of nonspecific reactions, which indicates the duration of the negative impact of immobilization stress.

Download

References:
1.Sies H. Oxidative stress: a concept in redox biology and medicine. Redox Biology. 2015;4:180-3. https://doi.org/10.1016/j.redox.2015.01.002
2. Kolesnikova L. I., Kolesnikov S. I., Korytov L. I., Suslikova M. I., Darenskaya M. A. [et al.]. Oxidative stress as a mechanism of reduced glucose absorption under conditions of immobilization stress. Bulletin of Experimental Biology and Medicine. 2017;164(2):132-135. https://doi.org/10.1007/s10517-017-3941-5
3. Rahal A., Kumar A., Singh V., Yadav B., Tiwari R. [et al.]. Oxidative stress, prooxidants, and antioxidants: the interplay. BioMed Research International. 2014;2014:19. https://doi.org/10.1155/2014/761264
4. Magdalena A., Pop P. A. The role of antioxidants in the chemistry of oxidative stress: A review. European Journal of Medicinal Chemistry. 2015;97(5):55-74. https://doi.org/10.1016/j.ejmech.2015.04.040
5. Bar-Or D., Bar-Or R., Rael L. T., Brodyd E. N. Oxidative stress in severe acute illness. Redox Biology. 2015;4:340-345. https://doi.org/10.1016/j.redox.2015.01.006
6. Novozhilov A. V., Tavrovskaya T. V., Ivanov V. A., Morozov V. I. Hematological parameters and redox balance of rat blood in the dynamics of immobilization. Bulletin of experimental biology and medicine. 2013;155(4):447-450. https://doi.org/10.1007/s10517-013-2174-5
7. Solin А. V., Lyashev Yu. D. Vliyanie opoidnykh peptidov na soderzhanie produktov POL i aktivnost antioksidantnoj sistemy v pecheni krys, podvergshikhsya immobilizatsionnomu stressu. Byulleten ehksperimentalnoj biologii i meditsiny. – Bulletin of Experimental Biology and Medicine. 2012;153(6):803-805. (In Russ.)
8. McAlinn H. R., Reich B., Contoreggi N. H., Kamakura R. P., Dyer A. G. [et al.]. Sex Differences in the Subcellular Distribution of Corticotropin-Releasing Factor Receptor 1 in the Rat Hippocampus following Chronic Immobilization Stress. Neuroscience. 2018;383:98-113. https://doi.org/10.1016/j.neuroscience.2018.05.007
9. Volchegorskij I. А., Nalimov А. G., Yarovinskij B. G., Lifshits R. I. Sopostavlenie razlichnykh podkhodov k opredeleniyu produktov perekisnogo okisleniya lipidov v geptan-izopropanolnykh ehkstraktakh krovi. Voprosy meditsinskoj khimii. – Questions of medical chemistry. 1989;35(1):127-131. (In Russ.).
10. Gavrilov V. B., Gavrilova А. R., Mazhul L. M. Аnaliz metodov opredeleniya produktov perekisnogo okisleniya lipidov v syvorotke krovi po testu s tiobarbiturovoj kislotoj. Voprosy meditsinskoj khimii. Questions of medical chemistry. 1987;(1):118-122. (In Russ.).
11. Klebanov G. I., Babenkova I. V., Teselkin Yu. O., Komarov O. S., Vladimirov Yu. А. Otsenka АOА plazmy krovi s primeneniem zheltochnykh lipoproteidov. Laboratornoe delo. – Laboratory work. 1988;(5):59-60. (In Russ.).
12. Chernyauskene R. Ch., Varshkyavichene Z. Z., Gribauskas P. S. Odnovremennoe opredelenie kontsentratsij vitaminov E i А vs yvorotke krovi. Laboratornoe delo. – Laboratory work. 1984;(6):362-365. (In Russ.).
13. Misra H. P., Fridovich I. The role of superoxide anion in autoxidation of epinephrine and a simple assay for superoxide dismutase. The Journal of Biological Chemistry. 1972;247:3170-3175.
14. Hisin P. J., Hilf R. Fluorоmetric method for determination of oxidized and reduced glutathione in tissues. Analytical Biochemistry. 1976;74:214-226.
15. Wu N., Shen H., Liu H., Wang Y., Bai Y. [et al.]. Acute blood glucose fluctuation enhances rat aorta endothelial cell apoptosis, oxidative stress and pro-inflammatory cytokine expression in vivo. Cardiovascular Diabetology. 2016;15(1):109. https://doi.org/10.1186/s12933-016-0427-0
16. Liyanarachchi K. D., Debono M. Physiology of the pituitary, thyroid, parathyroid and adrenal glands. Surgery. 2017;35(10):542-55. https://doi.org/10.1016/j.mpsur.2017.07.002

Keywords: immobilization stress, oxidative stress, stress-reaction


Founders:
Stavropol State Medical Academy
Pyatigorsk State Research Institute of Balneotherapeutics
Pyatigorsk State Pharmaceutical Academy