Medical news
of the North Caucasus
Scientific journal
Mass media registration certificate dated December 7, 2006.
Series ПИ #ФС 77-26521.
Federal service for surveillance over non-violation of the legislation in the sphere of mass communications and protection of cultural heritage.
ISSN 2073-8137

Site search

Correspondence address
310 Mira Street, Stavropol, Russia, 355017

+7 8652 352524; +7 8652 353229.

+7 8652 352524.


Studying the geroprotective effects of inhibitors suppressing aging -associated signaling cascades in model organisms

Alexey Moskalev; Mikhail Shaposhnikov; Ilya Solovev;

According to DrugAge (http://genomics.senescence.info/drugs/) and Geroprotectors.org (http://geroprotectors. org/) databases nowadays more than 200 compounds which elongate lifespan of model organisms exist. One of the most promising approaches constitutes aging-associated pathways (insulin/IGF-1, mTOR, NF-κB, PI3k, etc.) as main targets for new perspective geroprotectors’ screening. In the current review we summarized the data touching upon geroprotectors that target signaling pathways which are involved in stress-response, metabolism, growth and proliferation, inflammation, apoptosis, etc. Some our results on Drosophila melanogaster and Caenorhabditis elegans models confirm the effectiveness of pathways of aging inhibition approach to the search for new geroprotectors.


1. Aliper A., Belikov A. V., Garazha A. [et al.] In search for geroprotectors: in silico screening and in vitro validation of signalome-level mimetics of young healthy state. Aging (Albany NY). 2016;8(9):2127-2152. doi:10.18632/aging.101047
2. Ayyadevara S., Alla R., Thaden J. J., Shmookler Reis R. J. Remarkable longevity and stress resistance of nematode PI3K-null mutants. Aging Cell. 2008;7(1):13-22. doi: 10.1111/j.1474-9726.2007.00348.x
3. Balistreri C. R., Madonna R., Melino G., Caruso C. The emerging role of Notch pathway in ageing: Focus on the related mechanisms in age-related diseases. Ageing Res Rev. 2016;29:50-65. doi: 10.1016/j.arr.2016.06.004
4. Barardo D., Thornton D., Thoppil H. [et al.] The DrugAge database of aging-related drugs. Aging Cell. 2017;16(3):594-597. doi: 10.1111/acel.12585
5. Barardo D. G., Newby D., Thornton D. [et al.] Machine learning for predicting lifespan-extending chemical compounds. Aging (Albany NY). 2017;9(7):1721-1737. doi: 10.18632/aging.101264
6. Bartke A., Brown-Borg H. Life extension in the dwarf mouse. Curr. Top. Dev. Biol. 2004;63:189-225. doi: 10.1016/S0070-2153(04)63006-7
7. Bikadi Z., Hazai E. Application of the PM6 semi-empirical method to modeling proteins enhances docking accuracy of AutoDock. J. Cheminform. 2009;1:15. doi:10.1186/1758-2946-1-15
8. Bitto A., Ito T. K., Pineda V. V. [et al.] Transient rapamycin treatment can increase lifespan and healthspan in middle-aged mice. Elife. 2016;5. doi: 10.7554/eLife.16351
9. Blagosklonny M. V. An anti-aging drug today: from senescence-promoting genes to anti-aging pill. Drug Discov. Today. 2007;12(5-6):218-224. doi: 10.1016/j.drudis.2007.01.004
10. Blagosklonny M. V. From rapalogs to anti-aging formula. Oncotarget. 2017;8(22):35492-35507. doi: 10.18632/oncotarget18033
11. Danilov A., Shaposhnikov M., Plyusnina E. [et al.] Selective anticancer agents suppress aging in Drosophila. Oncotarget. 2013;4(9):1507-1526. doi:10.18632/oncotarget1272
12. Danilov A., Shaposhnikov M., Shevchenko O. [et al.] Influence of non-steroidal anti-inflammatory drugs on Drosophila melanogaster longevity. Oncotarget. 2015;6(23):19428-19444. doi: 10.18632/oncotarget5118
13. Dessale T., Batchu K. C., Barardo D. [et al.] Slowing ageing using drug synergy in C. elegans. bioRxiv. 2017. doi: 10.1101/153205
14. Fomenko A. N., Proshkina E. N., Fedintsev A. Y. [et al.] Potential geroproteсtors. – Sankt-Peterburg, 2016.
15. Gardner T. S. The effect of yeast nucleic acid on the survival time of 600 day old albino mice. Journal of Gerontology. 1946;1(Pt 1 4):445-452. doi: 10.1093/geronj/1.4_Part_2.205
16. Gardner T. S. The use of Drosophila melanogaster as a screening agent for longevity factors: II. The effects of biotin, pyridoxine, sodium yeast nucleate, and pantothenic acid on the life span of the fruit fly. Journal of Gerontology. 1948;3(1):9-13. doi: 10.1093/geronj/3.1.9
17. Gardner T. S. The use of Drosophila melanogaster as a screening agent for longevity factors; pantothenic acid as a longevity factor in royal jelly. Journal of Gerontology. 1948;3(1):1-8. doi: 10.1093/geronj/3.1.1
18. Gardner T. S., Forbes F. B. The effect of sodium thiocyanate and yeast nucleic acid on the survival time of 700 day old albino mice. Journal of Gerontology. 1946;1(Pt 1 4):453-456. doi: 10.1093/geronj/1.4_Part_2.209
19. Grosdidier A., Zoete V., Michielin O. SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Res. 2011;39(Web Server issue):W270-277. doi: 10.1093/nar/gkr366
20. Gruber J., Yee Z., Tolwinski N. Developmental Drift and the Role of Wnt Signaling in Aging. Cancers. 2016;8(8):73. doi: 10.3390/cancers8080073
21. Harman D. Aging: a theory based on free radical and radiation chemistry. J. Gerontol. 1956;11(3):298-300. doi: 10.1093/geronj/11.3.298
22. Hartenfeller M., Schneider G. De novo drug design. Methods Mol. Biol. 2011;672:299-323. doi: 10.1007/978-1-60761-839-3_12
23. He C., Tsuchiyama S. K., Nguyen Q. T., Plyusnina E. N. [et al.] Enhanced longevity by ibuprofen, conserved in multiple species, occurs in yeast through inhibition of tryptophan import. PLoS Genet. 2014;10(12):e1004860. doi:10.1371/journal.pgen.1004860
24. Herce H. D., Schumacher D., Schneider A. F. L. [et al.] Cell-permeable nanobodies for targeted immunolabelling and antigen manipulation in living cells. Nat. Chem. 2017;9(8):762-771. doi: 10.1038/nchem.2811
25. Hill S. M., Hao X., Liu B., Nystrom T. Life-span extension by a metacaspase in the yeast Saccharomyces cerevisiae. Science. 2014;344(6190):1389-1392. doi:10.1126/science.1252634
26. Honoki K., Fujii H., Tsukamoto S. [et al.] Crossroads of hallmarks in aging and cancer: Anti-aging and anticancer target pathways can be shared. Trends in Cancer Research. 2016;11:39-59.
27. Huang X., Leggas M., Dickson R. C. Drug synergy drives conserved pathways to increase fission yeast lifespan. PLoS ONE. 2015;10(3):e0121877. doi: 10.1371/journal. pone.0121877
28. Huang X., Liu J., Withers B. R. [et al.] Reducing signs of aging and increasing lifespan by drug synergy. Aging Cell. 2013;12(4):652-660. doi:10.1111/acel.12090
29. Huhne R., Thalheim T., Suhnel J. AgeFactDB – the JenAge Ageing Factor Database – towards data integration in ageing research. Nucleic Acids Res. 2014;42(Database issue):D892-896. doi: 10.1093/nar/gkt1073
30. Lashmanova E., Proshkina E., Zhikrivetskaya S. [et al.] Fucoxanthin increases lifespan of Drosophila melanogaster and Caenorhabditis elegans. Pharmacol. Res. 2015;100:228-241. doi: 10.1016/j.phrs.2015.08.009
31. Liao C., Sitzmann M., Pugliese A., Nicklaus M. C. Software and resources for computational medicinal chemistry. Future Med. Chem. 2011;3(8):1057-1085. doi:10.4155/fmc.11.63
32. López-Otín C., Blasco M. A., Partridge L. [et al.] The hallmarks of aging. Cell. 2013;153(6):1194-1217. doi: 10.1016/j.cell.2013.05.039
33. Medina-Franco J. L., Giulianotti M. A., Welmaker G. S., Houghten R. A. Shifting from the single to the multitarget paradigm in drug discovery. Drug Discov. Today. 2013;18(9-10):495-501. doi: 10.1016/j.drudis.2013.01.008
34. Meng X. Y., Zhang H. X., Mezei M., Cui M. Molecular docking: a powerful approach for structure-based drug discovery. Curr. Comput. Aided. Drug Des. 2011;7(2): 146-157. doi: 10.2174/157340911795677602
35. Metchnikoff E., Mitchell P. C. The prolongation of life: optimistic studies. – New York & London: G. P. Putnam’s Sons, 1910.
36. Moskalev A., Chernyagina E., de Magalhaes J. P. [et al.] Geroprotectors.org: a new, structured and curated database of current therapeutic interventions in aging and age-related disease. Aging (Albany NY). 2015;7(9):616-628. doi: 10.18632/aging.100799
37. Moskalev A., Chernyagina E., Kudryavtseva A., Shaposhnikov M. Geroprotectors: A Unified Concept and Screening Approaches. Aging Dis. 2017;8(3):354-363. doi: 10.14336/AD.2016.1022
38. Moskalev A., Chernyagina E., Tsvetkov V. [et al.] Developing criteria for evaluation of geroprotectors as a key stage toward translation to the clinic. Aging Cell. 2016;15(3):407-415. doi: 10.1111/acel.12463
39. Moskalev A., Shaposhnikov M. Pharmacological inhibition of NF-κB prolongs lifespan of Drosophila melanogaster. Aging (Albany NY). 2011;3(4):391-394. doi:10.18632/aging.100314
40. Moskalev A. A., Aliper A. M., Smit-McBride Z. [et al.] Genetics and epigenetics of aging and longevity. Cell. Cycle. 2014;13(7):1063-1077. doi:10.4161/cc.28433
41. Moskalev A. A., Shaposhnikov M. V. Pharmacological inhibition of phosphoinositide 3 and TOR kinases improves survival of Drosophila melanogaster. Rejuvenation Res. 2010;13(2-3):246-247. doi: 10.1089/rej.2009.0903
42. Moskalev A. A., Shaposhnikov M. V. Pharmacological inhibition of phosphoinositide 3 and TOR kinases improves survival of Drosophila melanogaster. Rejuvenation Res. 2010;13(2-3):246-247. doi: 10.1089/rej.2009.0903
43. Murakami S., Johnson T. E. Life extension and stress resistance in Caenorhabditis elegans modulated by the tkr-1 gene. Curr Biol. 1998;8(19):1091-1094. doi: 10.1016/S0960-9822(98)70448-8
44. Neafsey P. J. Longevity hormesis. A review. Mech Ageing Dev. 1990;51(1):1-31. doi: 10.1016/0047-6374(90)90158-C
45. Plyusnina E. N., Shaposhnikov M. V., Moskalev A. A. Increase of Drosophila melanogaster lifespan due to D-GADD45 overexpression in the nervous system. Biogerontology. 2011;12(3):211-226. doi: 10.1007/s10522-010-9311-6
46. Powers R. W., Kaeberlein M., Caldwell S. D. [et al.] Extension of chronological life span in yeast by decreased TOR pathway signaling. Genes. Dev. 2006;20(2):174-184. doi: 10.1101/gad.1381406
47. Proshkina E. N., Shaposhnikov M. V., Sadritdinova A. F. [et al.] Basic mechanisms of longevity: A case study of Drosophila pro-longevity genes. Ageing Res. Rev. 2015;24(Pt B):218-231. doi: 10.1016/j.arr.2015.08.005
48. Robida-Stubbs S., Glover-Cutter K., Lamming D. W. [et al.] TOR signaling and rapamycin influence longevity by regulating SKN-1/Nrf and DAF-16/FoxO. Cell. Metab. 2012;15(5):713-724. doi: 10.1016/j.cmet2012.04.007
49. Rogina B., Reenan R. A., Nilsen S. P., Helfand S. L. Extended life-span conferred by cotransporter gene mutations in Drosophila. Science. 2000;290(5499):2137-2140. doi: 10.1126/science.290.5499.2137
50. Schmidt F., Matter H., Hessler G., Czich A. Predictive in silico off-target profiling in drug discovery. Future Med. Chem. 2014;6(3):295-317. doi:10.4155/fmc.13.202
51. Shaposhnikov M., Latkin D., Plyusnina E. [et al.] The effects of pectins on life span and stress resistance in Drosophila melanogaster. Biogerontology. 2014;15(2):113-127. doi: 10.1007/s10522-013-9484-x
52. Shmookler Reis R. J., Bharill P., Tazearslan C., Ayyadevara S. Extreme-longevity mutations orchestrate silencing of multiple signaling pathways. Biochim Biophys Acta. 2009;1790(10):1075-1083. doi: 10.1016/j.bbagen.2009.05.011
53. Simko G. I., Gyurko D., Veres D. V. [et al.] Network strategies to understand the aging process and help age-related drug design. Genome Med. 2009;1(9):90. doi: 10.1186/gm90
54. Van Bockstaele F., Holz J. B., Revets H. The development of nanobodies for therapeutic applications. Curr Opin Investig Drugs. 2009;10(11):1212-1224. doi: 10.2217/nnm.13.86
55. Wang X., Chrysovergis K., Kosak J. [et al.] hNAG-1 increases lifespan by regulating energy metabolism and insulin/IGF-1/mTOR signaling. Aging (Albany NY). 2014;6(8):690-704. doi: 10.18632/aging.100687
56. Wei D., Jiang X., Zhou L. [et al.] Discovery of multitarget inhibitors by combining molecular docking with common pharmacophore matching. J. Med. Chem. 2008;51(24):7882-7888. doi: 10.1021/jm8010096
57. Wei M., Fabrizio P., Hu J. [et al.] Life span extension by calorie restriction depends on Rim15 and transcription factors downstream of Ras/PKA, Tor, and Sch9. PLoS Genet. 2008;4(1):e13. doi: 10.1371/journal. pgen.0040013
58. Yanai H., Budovsky A., Barzilay T. [et al.] Widescale comparative analysis of longevity genes and interventions. Aging Cell. 2017; doi: 10.1111/acel.12659

Keywords: longevity, aging, geroprotector, signaling cascades pathways, model organisms

Stavropol State Medical Academy
Pyatigorsk State Research Institute of Balneotherapeutics
Pyatigorsk State Pharmaceutical Academy