logo
Medical news
of the North Caucasus
Scientific journal
Mass media registration certificate dated December 7, 2006.
Series ПИ #ФС 77-26521.
Federal service for surveillance over non-violation of the legislation in the sphere of mass communications and protection of cultural heritage.
ISSN 2073-8137
rus
русский
eng
english

Site search



Correspondence address
310 Mira Street, Stavropol, Russia, 355017

Tel
+7 865 2352511, +7 865 2353229.

E-mail
medvestnik@stgmu.ru

Importance of EEG features in active and quiet sleep for assessment of newborn brain maturation at neonatal centres

[Pediatrics]
Vitaly Schetinin; Livija Jakaite;

Newborn brain development can be analysed and interpreted by EEG-experts scoring maturity-related features in sleep electroencephalogram (EEG). These features widely vary during the sleep hours, and their importance can be different in quiet and active sleep stages. The level of muscle and electrode artefacts during the active sleep stage is higher than that in the quiet stage that could reduce the importance of features extracted from the active stage. In this paper, we use Bayesian methodology of averaging over Decision Tree (DT) models to assess the newborn brain maturity and explore importance of EEG features extracted from the quiet and active sleep stages. The use of DT models enables to find the EEG features which are most important for the brain maturity assessment. The method has been verified on EEG data recorded from 995 patients of neonatal centres under a project of the University of Jena (Germany) in 2004. The research has been supported by the Leverhulme Trust (UK), and anonymised EEG recordings have been made available for public research under support of the University of Bedfordshire (UK).

Download

References:
1. J. Clinical relevance of age-dependent EEG signatures in the detection of neonates at high risk for apnea. Neuroscience Letters. 1999;268(3):123–126. doi: 10.1016/S0304-3940(99)00397-3
2. Cooper R., Binnie C, Schaw J. C. Clinical neurophysiology: EEG, pediatric neurophysiology, special techniques and applications. Elsevier Science, 2003.
3. Scher M. S. Neurophysiological assessment of brain function and maturation: A measure of brain adaptation in high risk infants. Pediatric Neurology. 1997;16(3):191-198. doi: 10.1016/S0887-8994(97)00008-8
4. Kato T., Okumura A., Hayakawa F., Tsuji T., Natsume J., Watanabe K. Evaluation of brain maturation in pre-term infants using conventional and amplitude-integrated electroencephalograms. Clinical Neurophysiology. 2010;122(10):1967-1972. doi: 10.1016/j.clinph.2010. 12.063
5. Boylan G. B., Murray D. M., Rennie J. M. Neonatal cerebral investigation. Cambridge University Press, 2008.
6. Niedermeyer E., da Silva L. F. H., Electroencephalography: basic principles, clinical applications, and related fields, 5th ed., Lippincott Williams & Wilkins, 2005.
7. Paul K., Krajča V., Roth Z., Melichar J., Petránek S. Comparison of quantitative EEG characteristics of quiet and active sleep in newborns. Sleep Medicine. 2003;4(6):543–552. doi: 10.1016/j.sleep.2003.08.008
8. Janjarasjitt S., Scher M. S., Loparo K. Nonlinear dynamical analysis of the neonatal EEG time series: The relationship between neurodevelopment and complexity. Clinical Neurophysiology. 2008;119(8):822–836. doi:10.1016/j.clinph.2007.11.012
9. Löfhede J., Thordstein M., Löfgren N., Flisberg A., Rosa-Zurera M. [et al.] Automatic classification of background EEG activity in healthy and sick neonates. Journal of Neural Engineering. 2010;7(1). doi: 10.1088/1741-2560/7/1/016007
10. Krajča V., Petránek S., Mohylová J., Paul K., Gerla V. [et al.] Modeling the microstructure of neonatal EEG sleep stages by temporal profiles. Proc. IFMBE Proceedings of the 13th International Conference on Biomedical Engineering (CBME2008). 2009;23:133–137.
11. Scher M. S., Steppe D. A., Banks D. L., Guthrie R. D., Sclabassi R. J. Maturational trends of EEG-sleep measures in the healthy preterm neonate. Pediatr. Neurol. 1995;12(4):314-22. doi: 10.1016/0887-8994(95)00052-H
12. O’Toole J. M., Boylan G. B., Vanhatalo S., Stevenson N. J. Estimating functional brain maturity in very and extremely preterm neonates using automated analysis of the electroencephalogram. Clinical Neurophysiology. 2016;127(8):2910-2918. doi: 10.1016/j.clinph. 2016.02.024
13. Chipman H., George E., McCullock R. Bayesian CART model search. Journal of American Statistics. 1998;93(443):935–960. doi:10.1080/01621459.1998.10473750
14. Denison D. G. T., Holmes C. C., Mallick B. K., Smith A. F. M. Bayesian Methods for Nonlinear Classification and Regression. Wiley, 2012.
15. Schetinin V., Jakaite L. Classification of newborn EEG maturity with Bayesian averaging over decision trees. Expert Systems with Applications. 2012;39(10):9340–9347. doi: 10.1016/j.eswa.2012.02.184
16. Nolan H., Whelan R., and Reilly R. B. FASTER: Fully Automated Statistical Thresholding for EEG artifact Rejection. J. Neurosci Methods. 2010;192(1):152-62. doi: 10.1016/j.jneumeth.2010.07.015
17. Schetinin V., Jakaite L. Extraction of features from sleep EEG for Bayesian assessment of brain development. PLOS ONE. 2017;12(3):e0174027. doi:10.1371/journal.pone.0174027
18. Koolen N., Dereymaeker A., O. Räsänen, Jansen K., Vervisch J. [et al.] Early development of synchrony in cortical activations in the human. Neuroscience. 2016;322:298-307. doi: 10.1016/j.neuroscience.2016.02.017

Keywords: newborn electroencephalogram, feature importance, sleep stages, Bayesian classification, decision trees


Founders:
Stavropol State Medical Academy
Pyatigorsk State Research Institute of Balneotherapeutics
Pyatigorsk State Pharmaceutical Academy