logo
Medical news
of the North Caucasus
Scientific journal
Mass media registration certificate dated December 7, 2006.
Series ПИ #ФС 77-26521.
Federal service for surveillance over non-violation of the legislation in the sphere of mass communications and protection of cultural heritage.
ISSN 2073-8137
rus
русский
eng
english

Site search



Correspondence address
310 Mira Street, Stavropol, Russia, 355017

Tel
+7 865 2352511, +7 865 2353229.

E-mail
medvestnik@stgmu.ru

Diagnostic potential of early forms of oral tumors: analysis of epigenetic markers

[Reviews]
Ildar Akhmetovich Uzyanbaev; Tatyana Nikolaevna Belova; Lyudmila Viktorovna Spirina; Sergey Sirak; Gregory Petrosyan; Evgeny Shchetinin;

This work offers a comprehensive analysis of the role that epigenetic changes play as potential markers of the early stages of tumor transformation of oral cavity cells.

There is a discussion of epigenetic modifications, such as DNA methylation, histone modifications, and changes in the non-coding RNAs expression, all of which play a crucial role in tumor transformation of cells at the early stages of oncogene activation, and in a decreasing activity of TSGs.

Specific and multidirectional changes in epigenetic control can be potentially employed as oral cancer diagnostic biomarkers. Proof to the latter can be found in the fact that DNMT and HDAC inhibitors are involved in the reactivation of TSGs as well as in the suppression of oncogenes, ensuring therapeutic effects of the respective measures taken in case of oral cancer. New technological advances create conditions for developing specialized technological and stratification tests and maps, as well as standard operating procedures for molecular & genetic examination of certain categories of patients, which – if coupled with the AI potential and that of bioinformatics – might allow analyzing the profiles of epigenetic changes and forecast the potential course of oral cancer progress, both under predisposing conditions and without such.

Download

References:
1. Sung H., Ferlay J., Siegel R. L., Laversanne M., Soerjomataram I. [et al.]. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021;71(3):209-249. https://doi.org/10.3322/caac.21660
2. lsaeedi S. M., Aggarwal S. The Holistic Review on Occurrence, Biology, Diagnosis, and Treatment of Oral Squamous Cell Carcinoma. Cureus. 2022;14:e30226. https://doi.org/10.7759/cureus.30226
3. Bugshan A., Farooq I. Oral squamous cell carcinoma: metastasis, potentially associated malignant disorders, etiology and recent advancements in diagnosis. F1000Res. 2020;9:229. https://doi.org/10.12688/f1000research.22941.1
4. Khurshid Z., Zafar M. S., Khan R. S., Najeeb S., Slowey P. D., Rehman I. U. Role of Salivary Biomarkers in Oral Cancer Detection. Adv. Clin. Chem. 2018;86:23-70. https://doi.org/10.1016/bs.acc.2018.05.002
5. Ragos V., Mastronikolis N. S., Tsiambas E., Baliou E., Mastronikolis S. N. [et al.]. p53 mutations in oral cavity carcinoma. J. BUON. 2018;23(6):1569-1572.
6. Karpuk N. A., Rubnikovich S. P., Mazur O. Ch., Zhyltsov I. V., Karpuk I. Yu. [et al.]. Analysis of the function of the genes with the highest number of germinal mutations in patients with leukoplakia and cancer of the oral mucosa. Med. News North Caucasus. 2023;18(2):155-161. https://doi.org/10.14300/mnnc.2023.18034
7. Batistella E. Â., Gondak R., Rivero E. R. C., Warnakulasuriya S., Guerra E. [et al.]. Comparison of tobacco and alcohol consumption in young and older patients with oral squamous cell carcinoma: a systematic review and meta-analysis. Clin. Oral Investig. 2022;26(12):6855-6869. https://doi.org/10.1007/s00784-022-04719-z
8. Tan Y., Wang Z., Xu M., Li B., Huang Z. [et al.]. Oral squamous cell carcinomas: state of the field and emerging directions. Int. J. Oral Sci. 2023;15(1):44. https://doi.org/10.1038/s41368-023-00249-w
9. Oyeyemi B. F., Kaur U. S., Paramraj A., Chintamani, Tandon R. [et al.]. Microbiome analysis of saliva from oral squamous cell carcinoma (OSCC) patients and tobacco abusers with potential biomarkers for oral cancer screening. Heliyon. 2023;9(11):e21773. https://doi.org/10.1016/j.heliyon.2023.e21773
10. Rangel R., Pickering C. R., Sikora A. G., Spiotto M. T. Genetic Changes Driving Immunosuppressive Microenvironments in Oral Premalignancy. Front. Immunol. 2022;13:840923. https://doi.org/10.3389/fimmu.2022.840923
11. Khan M. M., Frustino J., Villa A., Nguyen B. C., Woo S. B. [et al.]. Total RNA sequencing reveals gene expression and microbial alterations shared by oral pre-malignant lesions and cancer. Hum. Genomics. 2023;17(1):72. https://doi.org/10.1186/s40246-023-00519-y
12. Madhura M. G., Rao R. S., Patil S., Fageeh H. N., Alhazmi A., Awan K. H. Advanced diagnostic aids for oral cancer. Dis. Mon. 2020;66(12):101034. https://doi.org/10.1016/j.disamonth.2020.101034
13. Hema K. N., Smitha T., Sheethal H. S., Mirnalini S. A. Epigenetics in oral squamous cell carcinoma. J. Oral Maxillofac. Pathol. 2017;21:252-259. https://doi.org/10.4103/jomfp.JOMFP_150_17
14. Alothman L., AlSenani M. A., Alrabiah R., Ras A. A., Abulhassan E. H. [et al.]. Insights into Epigenetics Mechanisms in Oral Squamous Cell Carcinoma. Saudi J. Oral Dent. Res. 2020;5:1297-2518. https://doi.org/10.36348/sjodr.2020.v05i01.005
15. Zhang L., Lu Q., Chang C. Epigenetics in Health and Disease. Adv. Exp. Med. Biol. 2020;1253:3-55. https://doi.org/10.1007/978-981-15-3449-2_1
16. Deans C., Maggert K. A. What do you mean, «epigenetic»? Genetics. 2015;199(4):887-896. https://doi.org/10.1534/genetics.114.173492
17. Lod S., Johansson T., Abrahamsson K. H., Larsson L. The influence of epigenetics in relation to oral health. Int. J. Dent. Hyg. 2014;12:48-54. https://doi.org/10.1111/idh.12030
18. Emfietzoglou R., Pachymanolis E., Piperi C. Impact of Epigenetic Alterations in the Development of Oral Diseases. Curr. Med. Chem. 2021;28(6):1091-1103. https://doi.org/10.2174/0929867327666200114114802
19. Vatsa P. P., Jindal Y., Bhadwalkar J., Chamoli A., Upadhyay V., Mandoli A. Role of epigenetics in OSCC: an understanding above genetics. Med. Oncol. 2023;40(4):122. https://doi.org/10.1007/s12032-023-01992-0
20. Mesgari H., Esmaelian S., Nasiri K., Ghasemzadeh S., Doroudgar P., Payandeh Z. Epigenetic Regulation in Oral Squamous Cell Carcinoma Microenvironment: A Comprehensive Review. Cancers. 2023;15(23):5600. https://doi.org/10.3390/cancers15235600
21. van der Wijst M. G., Venkiteswaran M., Chen H., Xu G. L., Plösch T., Rots M. G. Local chromatin microenvironment determines DNMT activity: from DNA methyltransferase to DNA demethylase or DNA dehydroxymethylase. Epi genetics. 2015;10(8):671-676. https://doi.org/10.1080/15592294.2015.1062204
22. Turpin M., Salbert G. 5-methylcytosine turnover: Mechanisms and therapeutic implications in cancer. Front. Mol. Biosci. 2022;9:976862. https://doi.org/10.3389/fmolb.2022.976862
23. Foy J. P., Pickering C. R., Papadimitrakopoulou V. A., Jelinek J., Lin S. H. [et al.]. New DNA methylation markers and global DNA hypomethylation are associated with oral cancer development. Cancer Prev. Res. 2015;8:1027-1035. https://doi.org/10.1158/1940-6207.CAPR-14-0179
24. Adeoye J., Alade A. A., Zhu W. Y., Wang W., Choi S. W., Thomson P. Efficacy of hypermethylated DNA biomarkers in saliva and oral swabs for oral cancer diagnosis: Systematic review and meta-analysis. Oral Dis. 2022;28(3):541-558. https://doi.org/10.1111/odi.13773
25. Kim S. Y., Han Y. K., Song J. M., Lee C. H., Kang K. [et al.]. Aberrantly hypermethylated tumor suppressor genes were identified in oral squamous cell carcinoma. Clin. Epigenet. 2019;11:116. https://doi.org/10.1186/s13148-019-0715-0
26. Shi Y., Ren X., Cao S., Chen X., Yuan B. [et al.]. TP53 gainof-function mutation modulates the immunosuppressive microenvironment in non-HPV-associated oral squamous cell carcinoma. J. Immunother. Cancer. 2023;11(8):e006666. https://doi.org/10.1136/jitc-2023-006666
27. Ekalaksananan T., Wongjampa W., Phusingha P., Chuerduangphui J., Vatanasapt P. [et al.]. Comprehensive Data of P53 R282 Gene Mutation with Human Papillomaviruses (HPV)-Associated Oral Squamous Cell Carcinoma (OSCC). Pathol. Oncol. Res. 2020;26(2):1191-1199. https://doi.org/10.1007/s12253-019-00673-6
28. Sridharan N., Nagalingam S., Vidhya P., Viswanathan P. Prevalence and diagnostic significance of p16, p53 expression in lichen planus as a potential premalignant lesion in oral squamous cell carcinoma. J. Oral Maxillofac. Pathol. 2024;28(1):56-61. https://doi.org/10.4103/jomfp.jomfp_427_23
29. Padin-Iruegas E., Chamorro-Petronacci C. M., SinesCajade I., Lorenzo-Pouso A. I., Blanco-Carrión A. [et al.]. DNA Methylation by Bisulfite Next-Generation Sequencing for MLH1 and MGMT in Oral Squamous Cell Carcinomas and Potentially Malignant Disorders: An Integrative Analysis towards Field Cancerization. Medicina. 2022;58(7):878. https://doi.org/10.3390/medicina58070878
30. Jayaprakash C., Radhakrishnan R., Ray S., Satyamoorthy K. Promoter methylation of MGMT in oral carcinoma: A population-based study and meta-analysis. Arch. Oral Biol. 2017;80:197-208. https://doi.org/10.1016/j.archoralbio.2017.04.006
31. Kreuger I. Z. M., Slieker R. C., van Groningen T., van Doorn R. Therapeutic Strategies for Targeting CDKN2A Loss in Melanoma. J. Invest. Dermatol. 2023;143(1):18-25.e1. https://doi.org/10.1016/j.jid.2022.07.016
32. Cilluffo D., Barra V., Di Leonardo A. P14(ARF): The Absence that Makes the Difference. Genes. 2020;11:824. https://doi.org/10.3390/genes11070824
33. Karami Fath M., Babakhaniyan K., Anjomrooz M., Jalalifar M., Alizadeh S. D. [et al.]. Recent Advances in Glioma Cancer Treatment: Conventional and Epigenetic Realms. Vaccines. 2022;10:1448. https://doi.org/10.3390/vaccines10091448
34. Zerrouqi A., Pyrzynska B., Febbraio M., Brat D. J., Van Meir E. G. P14ARF inhibits human glioblastoma-induced angiogenesis by upregulating the expression of TIMP3. J. Clin. Invest. 2012;122(4):1283-1295. https://doi.org/10.1172/JCI38596
35. Al-Ansari M. M., Hendrayani S. F., Tulbah A., Al-Tweigeri T., Shehata A. I., Aboussekhra A. p16INK4A represses breast stromal fibroblasts migration/invasion and their VEGF-A-dependent promotion of angiogenesis through Akt inhibition. Neoplasia. 2012;14(12):1269-1277. https://doi.org/10.1593/neo.121632
36. Giesche J., Mellert K., Geißler S., Arndt S., Seeling C. [et al.]. Epigenetic lockdown of CDKN1A (p21) and CDKN2A (p16) characterises the neoplastic spindle cell component of giant cell tumours of bone. J. Pathol. 2022;257(5):687-696. https://doi.org/10.1002/path.5925
37. Kordi-Tamandani D. M., Moazeni-Roodi A., Rigi Ladez M. A., Hashemi M., Birjandian E., Torkamanzehi A. Analysis of methylation patterns and expression profiles of p14ARF gene in patients with oral squamous cell carcinoma. Int. J. Biol. Markers. 2010;25(2):99-103.
38. Sailasree R., Abhilash A., Sathyan K. M., Nalinakumari K. R., Thomas S., Kannan S. Differential roles of p16INK4A and p14ARF genes in prognosis of oral carcinoma. Cancer Epidemiol. Biomark. Prev. 2008;17:414-420. https://doi.org/10.1158/1055-9965.EPI-07-0284
39. Al-Kaabi A., van Bockel L. W., Pothen A. J., Willems S. M. p16INK4A and p14ARF Gene Promoter Hypermethylation as Prognostic Biomarker in Oral and Oropharyngeal Squamous Cell Carcinoma: A Review. Dis. Markers. 2014;2014:260549. https://doi.org/10.1155/2014/260549
40. Inoue K., Fry E. A. Aberrant Expression of p14(ARF) in Human Cancers: A New Biomarker? Tumor Microenviron. 2018;1(2):37-44. https://doi.org/10.4103/tme.tme_24_17
41. Kis A., Tatár T. Z., Gáll T., Boda R., Tar I. [et al.]. Frequency of genetic and epigenetic alterations of p14ARF and p16INK4A in head and neck cancer in a Hungarian population. Pathol. Oncol. Res. 2014;20(4):923-929. https://doi.org/10.1007/s12253-014-9775-9
42. Rastogi V., Puri N., Mishra S., Arora S., Kaur G., Yadav L. An insight to oral epithelial dysplasia. Int. J. Head Neck Surg. 2013;4:74-82. https://doi.org/10.5005/jp-journals-10001-1144
43. Álvarez-Garcia V., Tawil Y., Wise H. M., Leslie N. R. Mechanisms of PTEN loss in cancer: It’s all about diversity. Semin. Cancer Biol. 2019;59:66-79. https://doi.org/10.1016/j.semcancer.2019.02.001
44. Flanagan D. J., Pentinmikko N., Luopajärvi K., Willis N. J., Gilroy K. [et al.]. NOTUM from Apc-mutant cells biases clonal competition to initiate cancer. Nature. 2021;594:430-435. https://doi.org/10.1038/s41586-021-03525-z
45. Li J. L., Jain N., Tamayo L. I., Tong L., Jasmine F. [et al.]. The association of cigarette smoking with DNA methylation and gene expression in human tissue samples. Am. J. Hum. Genet. 2024;111(4):636-653. https://doi.org/10.1016/j.ajhg.2024.02.012
46. Skov-Jeppesen S. M., Kobylecki C. J., Jacobsen K. K., Bojesen S. E. Changing Smoking Behavior and Epigenetics: A Longitudinal Study of 4,432 Individuals From the General Population. Chest. 2023;163(6):1565-1575. https://doi.org/10.1016/j.chest.2022.12.036
47. Asghar U., Witkiewicz A. K., Turner N. C., Knudsen E. S. The history and future of targeting cyclin-dependent kinases in cancer therapy. Nat. Rev. Drug Discov. 2015;14(2):130-146. https://doi.org/10.1038/nrd4504
48. Rauf M., Azmat H., Shahab S., Ahmad A., Khadija S., Firidi J. Immunohistochemical Expression Of Cyclind1 In Conventional Squamous Cell Carcinomaof Oral Cavity. J. Ayub. Med. Coll. Abbottabad. 2023;35(1):11-16. https://doi.org/10.55519/JAMC-01-10249
49. Cai Y., Liu Y. F., Li S. L., Pan Y. X., Zhu Y., Yu Y. N. Cyclin E overexpression and centrosome amplification in squamous cell carcinoma of oral cavity. Zhonghua Bing Li Xue Za Zhi. 2007;36(6):375-378.
50. Bourova-Flin E., Derakhshan S., Goudarzi A., Wang T., Vitte A. L. [et al.]. The combined detection of Amphiregulin, Cyclin A1 and DDX20/Gemin3 expression predicts aggressive forms of oral squamous cell carcinoma. Br. J. Cancer. 2021;125(8):1122-1134. https://doi.org/10.1038/s41416-021-01491-x
51. Niranjan K. C., Tayaar A., Kumar G. S., Krishnapillai R., Hallikeri K. [et al.]. Immunohistochemical Expression of Cyclin B1 in Epithelial Hyperplasia, Dysplasia and Oral Squamous Cell Carcinomas – A Comparative Study. J. Clin. Diagn. Res. 2016;10(9):ZC85-ZC90. https://doi.org/10.7860/JCDR/2016/19820.8563
52. Hsieh Y. P., Chen K. C., Chen M. Y., Huang L. Y., Su A. Y. [et al.]. Epigenetic Deregulation of Protein Tyrosine Kinase 6 Promotes Carcinogenesis of Oral Squamous Cell Carcinoma. Int. J. Mol. Sci. 2022;23(9):4495. https://doi.org/10.3390/ijms23094495
53. Shinozuka K., Uzawa K., Fushimi K., Yamano Y., Shiiba M. [et al.]. Downregulation of Carcinoembryonic Antigen-Related Cell Adhesion Molecule 1 in Oral Squamous Cell Carcinoma: Correlation with Tumor Progression and Poor Prognosis. Oncology. 2009;76:387-397. https://doi.org/10.1159/000215580
54. Li W., An N., Wang M., Liu X., Mei Z. Downregulation of AT-rich interaction domain 2 underlies natural killer cell dysfunction in oral squamous cell carcinom a. Immunol. Cell Biol. 2023;101:78-90. https://doi.org/10.1111/imcb.12602
55. Ghritlahare H., Einstein A., Singaraju S., Patel S., Gulati N., Mishra S. D. Immunohistochemical expression of survivin in oral epithelial dysplasia and different grades of oral squamous cell carcinoma. J. Oral Maxillofac. Pathol. 2022;26(4):451-457. https://doi.org/10.4103/jomfp.jomfp_301_21
56. Völkel P., Angrand P. O. The control of histone lysine methylation in epigenetic regulation. Biochimie. 2007;89:1-20. https://doi.org/10.1016/j.biochi.2006.07.009
57. Mancuso M., Matassa D. S., Conte M., Colella G., Rana G. [et al.]. H3K4 histone methylation in oral squamous cell carcinoma. Acta Biochim. Pol. 2009;56(3):405-410.
58. Arif M., Vedamurthy B. M., Choudhari R., Ostwal Y. B., Mantelingu K. [et al.]. Nitric oxide-mediated histone hyperacetylation in oral cancer: Target for a water-soluble HAT inhibitor, CTK7A. Chem. Biol. 2010;17:903-913. https://doi.org/10.1016/j.chembiol.2010.06.014
59. Chang H. H., Chiang C. P., Hung H. C., Lin C. Y., Deng Y. T., Kuo M. Y. Histone deacetylase 2 expression predicts poorer prognosis in oral cancer patients. Oral On col. 2009;45:610-614. https://doi.org/10.1016/j.oraloncology.2008.08.011
60. Zhu W., Wang J., Liu X., Xu Y., Zhai R. lncRNA CYTOR promotes aberrant glycolysis and mitochondrial respiration via HNRNPC-mediated ZEB1 stabilization in oral squamous cell carcinoma. Cell. Death Dis. 2022;13(8):703. https://doi.org/10.1038/s41419-022-05157-1
61. Jadhav K. B., Nagraj S. K., Arora S. miRNA for the assessment of lymph node metastasis in patients with oral squamous cell carcinoma: Systematic review and metanalysis. J. Oral Pathol. Med. 2021;50(4):345-352. https://doi.org/10.1111/jop.13134
62. Umapathy V. R., Natarajan P. M., Swamikannu B. Molecular and Therapeutic Roles of Non-Coding RNAs in Oral Cancer – A Review. Molecules. 2024;29(10):2402. https://doi.org/10.3390/molecules29102402
63. Lee E. Y., Song J. M., Kim H. J., Park H. R. Hypomethylation of lncRNA H19 as a potential prognostic biomarker for oral squamous cell carcinoma. Arch. Oral Biol. 2021;129:105214. https://doi.org/10.1016/j.archoralbio.2021.105214
64. Sheng P., Fields C., Aadland K., Wei T., Kolaczkowski O. [et al.]. Dicer cleaves 5’-extended microRNA precursors originating from RNA polymerase II transcription start sites. Nucleic Acids Res. 2018;46(11):5737-5752. https://doi.org/10.1093/nar/gky306
65. Vinayahalingam S., van Nistelrooij N., Rothweiler R., Tel A., Verhoeven T. [et al.]. Advancements in diagnosing oral potentially malignant disorders: leveraging Vision transformers for multi-class detection. Clin. Oral Investig. 2024;28(7):364. https://doi.org/10.1007/s00784-024-05762-8
66. Turton N., Payne K., Higginson J., Praveen P., Mehanna H., Nankivell P. Prognostic biomarkers for malignant progression of oral epithelial dysplasia: an updated systematic review and meta-analysis. Br. J. Oral Maxillofac. Surg. 2024;62(5):415-425. https://doi.org/10.1016/j.bjoms.2024.03.001
67. Cervigne N. K., Reis P. P., Machado J., Sadikovic B., Bradley G. [et al.]. Identification of a microRNA signature associated with progression of leukoplakia to oral carcinoma. Hum. Mol. Genet. 2009;18:4818-4829. https://doi.org/10.1093/hmg/ddp446
68. Roi A., Boia S., Rusu L. C., Roi C. I., Boia E. R. [et al.]. Circulating miRNA as a Biomarker in Oral Cancer Liquid Biopsy. Biomedicines. 2023;11(3):965. https://doi.org/10.3390/biomedicines11030965
69. Gu Y., Tang S., Wang Z., Cai L., Shen Y. [et al.]. Identification of key miRNAs and targeted genes involved in the progression of oral squamous cell carcinoma. J. Dental Sci. 2022;17(2):666-676. https://doi.org/10.1016/j.jds.2021.08.016
70. Meng Z., Zhang H., Li L., Wang K. Clinical significance of miR-142-3p in oral lichen planus and its regulatory role in keratinocyte proliferation. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology. 2021;132(4):441-447. https://doi.org/10.1016/j.oooo.2021.06.008
71. Kozaki K., Imoto I., Mogi S., Omura K., Inazawa J. Exploration of tumor-suppressive microRNAs silenced by DNA hypermethylation in oral cancer. Cancer Res. 2008;68:2094-2105.
72. Sousa L. O., Sobral L. M., de Almeida L. O., Garcia C. B., Greene L. J., Leopoldino A. M. SET protein modulates H4 histone methylation status and regulates miR-137 level in oral squamous cell carcinoma. Epigenomics. 2020;12(6):475-485. https://doi.org/10.2217/epi-2019-0181
73. Bolandparva F., Hashemi Nasab M. S., Mohamadnia A., Garajei A., Farhadi Nasab A., Bahrami N. Early Diagnosis of Oral Squamous Cell Carcinoma (OSCC) by miR-138 and miR-424-5p Expression as a Cancer Marker. Asian Pac. J. Cancer Prev. 2021;22(7):2185-2189. https://doi.org/10.31557/APJCP.2021.22.7.2185
74. Xie B. P., Shi L. Y., Li J. P., Zeng Y., Liu W. [et al]. Oleanolic acid inhibits RANKL-induced osteoclastogenesis via ER alpha/miR-503/RANK signaling pathway in RAW264.7 cells. Biomedicine & Pharmacotherapy. 2019;117:109045. https://doi.org/10.1016/j.biopha.2019.109045
75. Ramaiah M. J., Tangutur A. D., Manyam R. R. Epigenetic modulation and understanding of HDAC inhibitors in cancer therapy. Life Sci. 2021;277:119504. https://doi.org/10.1016/j.lfs.2021.11950
76. Suzuki M., Shinohara F., Endo M., Sugazaki M., Echigo S., Rikiishi H. Zebularine suppresses the apoptotic potential of 5-fluorouracil via cAMP/PKA/CREB pathway against human oral squamous cell carcinoma cells. Cancer Chemother. Pharmacol. 2009;64:223-232. https://doi.org/10.1007/s00280-008-0833-4
77. Kato K., Long N. K., Makita H., Toida M., Yamashita T. [et al.]. Effects of green tea polyphenol on methylation status of RECK gene and cancer cell invasion in oral squamous cell carcinoma cells. Br. J. Cancer. 2008;99:647-654. https://doi.org/10.1038/sj.bjc.6604521
78. Alexius-Lindgren M., Andersson E., Lindstedt I., Engström W. The RECK gene and biological malignancy – its significance in angiogenesis and inhibition of matrix metalloproteinases. Anticancer Res. 2014;34(8):3867-3873.
79. Jing F., Zhu L., Bai J., Cai X., Zhou X. [et al.]. Molecular mechanisms underlying the epigallocatechin-3-gallate-mediated inhibition of oral squamous cell carcinogenesis. Arch. Oral. Biol. 2023;153:105740. https://doi.org/10.1016/j.archoralbio.2023.105740
80. Ide R., Fujino Y., Hoshiyama Y., Mizoue T., Kubo T. [et al.]. A prospective study of green tea consumption and oral cancer incidence in Japan. Ann. Epidemiol. 2007;17:821-826. https://doi.org/10.1016/j.annepidem.2007.04.003
81. Deng Q., Wu Y., Hu X., Wu H., Guo M. [et al.]. Oolong Tea Consumption and the Risk of Oral Squamous Cell Carcinoma: A Propensity Score-Based Analysis in Southeast China. Front. Nutr. 2022;9:928840. https://doi.org/10.3389/fnut.2022.928840
82. Deng J., Misra V., Vilash N., Wu W., Hua C. [et al.]. Can acup a day keep cancer away? A systematic review exploringthe potential of coffee constituents in preven ting oralsquamous cell carcinoma. J. Oral Pathol. Med.2024;53(1):8-19. https://doi.org/10.1111/jop.1349718
83. Fang M. Z., Chen D., Sun Y., Jin Z., Christman J. K., Yang C. S. Reversal of hypermethylation and reactivation of p16INK4a, RARβ, and MGMT genes by genistein and other isoflavones from soy. Clin. Cancer Res. 2005;11:7033-7041. https://doi.org/10.1158/1078-0432.CCR-05-0406
84. Hussein A. M., Attaai A. H., Zahran A. M. Genistein anticancer efficacy during induced oral squamous cell carcinoma: an experimental study. J. Egypt. Natl. Canc. Inst.2022;34(1):37. https://doi.org/10.1186/s43046-022-00140-5
85. Jung M. Inhibitors of histone deacetylase as new anticancer agents. Curr. Med. Chem. 2001;8:1505-1511. https://doi.org/10.2174/0929867013372058
86. Marques A. E. M., do Nascimento Filho C. H. V., Marinho Bezerra T. M., Guerra E. N. S., Castilho R. M., Squarize C. H. Entinostat is a novel therapeutic agent to treat oral squamous cell carcinoma. J. Oral Pathol. Med. 2020;49:771-779. https://doi.org/10.1111/jop.13039
87. Jang B., Kim L. H., Lee S. Y., Lee K. E., Shin J. A., Cho S. D. Trichostatin A induces apoptosis in oral squamous cell carcinoma cell lines independent of hyperacetylation of histones. J. Cancer Res. Ther. 2018;14(Suppl.):S576-S582. https://doi.org/10.4103/0973-1482
88. Ahn M. Y. HDAC inhibitor apicidin suppresses murine oral squamous cell carcinoma cell growth in vitro and in vivo via inhibiting HDAC8 expression. Oncol. Lett. 2018;16:6552-6560. https://doi.org/10.3892/ol.2018.9468
89. Tavares M. O., Milan T. M., Bighetti-Trevisan R. L., Leopoldino A. M., de Almeida L. O. Pharmacological inhibition of HDAC6 overcomes cisplatin chemoresistance by targeting cancer stem cells in oral squamous cell carcinoma. J. Oral Pathol. Med. 2022;51(6):529-537. https://doi.org/10.1111/jop.13326

Keywords: epigenetic markers, oral cancer, DNA methylation, histone modifications, non-coding RNAs


Founders:
Stavropol State Medical Academy
Pyatigorsk State Research Institute of Balneotherapeutics
Pyatigorsk State Pharmaceutical Academy