Site search
Correspondence address
310 Mira Street, Stavropol, Russia, 355017
Tel
+7 865 2352511, +7 865 2353229.
E-mail
medvestnik@stgmu.ru
The journal is included into The list of leading scientific periodicals.
The journal is included into VINITI database and is registered in Electronic scientific library.
The journal is indexed by SCOPUS, Ulrich's International Periodicals Directory.
[Experimental medicine]
Ilya Bykov; Vadim Vladimirovich Malyshko; Denis Igorevich Shashkov; Arkady Viktorovich Moiseev; Alexander Basov; Mikhail Evgenevich Sokolov; Ivan Pavlyuchenko; Elena Evgenevna Esaulenko;
Technologies focusing on the synthesis of silver nanoparticles (AgNPs) are of high relevance within experimental and practical medicine, which can be accounted for by their antibacterial, antiviral, and fungicidal properties, as well as by their capacity to reveal particular antitumor activity, constitute a substantial part of several medical devices and diagnostic consumables. This study shows the effect caused by different ligand concentrations (polyvinylpyrrolidone / PVP) within the reaction system on the size and number of AgNPs obtained through cavitation-diffusion photochemical reduction. Lowering contents of the ligand (PVP) – going from 20 mg to 5 mg – have been proven to be associated with the development of mostly relatively larger nanoparticles (30+ nm of diameter). During that, a less significant decrease in the ligand used for the synthesis (within 25 % of its maximum concentration), too, leads to an increase in the number of smaller nanoparticles (under 15 nm), as well as in the AgNPs of average size (ranging from 15 to 30 nm). The results obtained through this study suggest that PVP may act not only as a stabilizing agent but also as a surfactant capable of stimulating the growth of silver nanoparticles while accelerating the rate of the Ag+ ion reduction reaction low-energy excitation. Generally speaking, the developed approach to AgNPs synthesis may help obtain solutions featuring a significant, reliable predominance of nanoparticles of a specific size, depending on their further use in various medical research and technology areas.
References:
1. Salih R., Bajou K., Shaker B., Elgamouz A. Antitumor effect of algae silver nanoparticles on human triple negative breast cancer cells. Biomed. Pharmacother. 2023;168:115532. https://doi.org/10.1016/j.biopha.2023.115532
2. Basov A., Dzhimak S., Sokolov M., Malyshko V., Moiseev A. [et al.] Changes in number and antibacterial activity of silver nanoparticles on the surface of suture materials during cyclic freezing. Nanomaterials. 2022;12(7):1164. https://doi.org/10.3390/nano12071164
3. Hu K., Zhang C., Li G., Liu Y., Wang D. [et al.] Efficient self-cleaning and antibacterial ceramics with ultra-low doping and high exposure of silver. J. Hazard Mater. 2024;461:132533. https://doi.org/10.1016/j.jhazmat.2023.132533
4. Tian R., Chen J., Li D., Sun X., Ma H. Preparation of chitosan/SiO2 coated silver nanoclusters and its application in enhanced fluorescence detection of berberine hydrochloride. Spectrochim. Acta Mol. Biomol. Spectrosc. 2024;305:123417. https://doi.org/10.1016/j.saa.2023.123417
5. Zhao L., Du X., Xu G., Song P. Nanozyme catalyzed-SERRS sensor for the recognition of dopamine based on AgNPs@PVP with oxidase-like activity. Spectrochim. Acta Mol. Biomol. Spectrosc. 2024;307:123606. https://doi.org/10.1016/j.saa.2023.123606
6. Sun Y., Zhou L., Ding Y., Liu C., Mao Z.S. [et al.] Fabrication of flexible electrospinning nano-fiber membrane for detection of respiratory tract transmission virus based on SERS. Talanta. 2024;266(Pt2):125127. https://doi.org/10.1016/j.talanta.2023.125127
7. Hossain N., Islam M. A., Chowdhury M. A. Synthesis and characterization of plant extracted silver nanoparticles and advances in dental implant applications. Heliyon. 2022;8(12):e12313. https://doi.org/10.1016/j.heliyon.2022.e12313
8. Althabaiti S. A., Khan Z., Narasimharao K., Bawaked S. M., Al-Sheheri S. Z. [et al.] Selective thermal and photocatalytic decomposition of aqueous hydrazine to produce H2 over Ag-modified TiO2 Nanomaterial. Nanomaterials (Basel). 2023;13(14):2076. https://doi.org/10.3390/nano13142076
9. Petriev I., Pushankina P., Glazkova Y., Andreev G., Baryshev M. Investigation of the dependence of electrocatalytic activity of copper and palladium nanoparticles on morphology and shape formation. Coatings. 2023;13:621. https://doi.org/10.3390/coatings13030621
10. Dzhimak S. S., Sokolov M. E., Basov A. A., Fedosov S. R., Malyshko V. V. [et al.] Optimization of physicochemical conditions to produce silver nanoparticles and estimation of the biological effects of colloids synthesized. Nanotechnologies in Russia. 2016;11:835. https://doi.org/10.1134/S1995078016060082
11. Dzhimak S. S., Malyshko V. V., Goryachko A. I., Sokolov M. E., Moiseev A. V., Basov A. A. Adsorption of silver nanoparticles on mono- and polyfilament fibers. Nanotechnologies in Russia. 2019;14:48. https://doi.org/10.1134/S199507801901004X
12. Dzhimak S. S., Malyshko V. V., Goryachko A. I., Sokolov M. E., Basov А. А. [et al.] Sorption activity of silver nanoparticles. Russian Physics Journal. 2019;62:314. https://doi.org/10.1007/s11182-019-01714-y
13. Zhang W., Zhang H., Li J., Zou X., Wang W. [et al.] PVP-capped silver nanoparticles for efficient SERS detection of adenine based on the stabilizing and enrichment roles of PVP. Mikrochim. Acta. 2023;191(1):1. https://doi.org/10.1007/s00604-023-06047-9
14. Ma Q., Young J., Gao J., Tao Y., Zhang W. Nanoscale hydrophobicity and electrochemical mapping provides insights into facet dependent silver nanoparticle dissolution. J. Phys. Chem. Lett. 2023;14(10):2665. https://doi.org/10.1021/acs.jpclett.2c03917
15. Basov A. A., Fedosov S. R., Malyshko V. V., Elkina A. A., Lyasota O. M., Dzhimak S. S. Evaluation of effectiveness of a new liquid media in healing infected wounds: an animal model. J. Wound Care. 2021;30:312. https://doi.org/10.12968/jowc.2021.30.4.312
16. Tofan Yu. V., Pavlova N. V., Demyanenko S. A., Kharchenko V. Z., Morozova M. N. Experimental study of the biocidal effect of nanosilver. Medical News of North Caucasus. 2022;17(2):204-206. https://doi.org/10.14300/mnnc.2022.17050
17. Mohanta Y. K., Mishra A. K., Panda J., Chakrabartty I., Sarma B. [et al.] Promising applications of phyto-fabricated silver nanoparticles: Recent trends in biomedicine. Biochem. Biophys. Res. Commun. 2023;688:149126. https://doi.org/10.1016/j.bbrc.2023.149126
18. Gheitaran R., Afkhami A., Madrakian T. Effect of light at different wavelengths on polyol synthesis of silver nanocubes. Sci. Rep. 2022;12(1):19202. https://doi.org/10.1038/s41598-022-23959-3
19. Gabrielyan L. S., Trchounian A. A. Antibacterial properties of silver nanoparticles and their membranotrophic action. Journal of the Belarusian State University. Biology. 2020;3:64-71. https://doi.org/10.33581/2521-1722-2020-3-64-71
20. Blinov A. V., Nagdalian A. A., Povetkin S. N., Gvozdenko A. A., Verevkina M. N. [et al.] Surface-oxidized polymer-stabilized silver nanoparticles as a covering component of suture materials. Micromachines (Basel). 2022;13(7):1105. https://doi.org/10.3390/mi13071105
21. Fernandez C. C., Sokolonski A. R., Fonseca M. S., Stanisic D., Araújo D. B. [et al.] Applications of silver nanoparticles in dentistry: advances and technological innovation. Int. J. Mol. Sci. 2021;22(5):2485. https://doi.org/10.3390/ijms22052485
22. Naumenko K., Zahorodnia S., Pop C. V., Rizun N. Antiviral activity of silver nanoparticles against the influenza A virus. J. Virus Erad. 2023;9(2):100330. https://doi.org/10.1016/j.jve.2023.100330
23. Gibała A., Żeliszewska P., Gosiewski T., Krawczyk A., Duraczyńska D. [et al.] Antibacterial and antifungal properties of silver nanoparticles-effect of a surface-stabilizing agent. Biomolecules. 2021;11(10):1481. https://doi.org/10.3390/biom11101481
24. Varghese A. K., Tamil P. P., Rugmini R., Shiva P. M., Kamakshi K., Sekhar K. C. Green synthesized ag nanoparticles for bio-sensing and photocatalytic applications. ACS Omega. 2020;5(22):13123-13129. https://doi.org/10.1021/acsomega.0c01136
Keywords: silver nanoparticles, experimental medicine, ligand, nanoparticle synthesis, polyvinylpyrrolidone