Site search
Correspondence address
310 Mira Street, Stavropol, Russia, 355017
Tel
+7 865 2352511, +7 865 2353229.
E-mail
medvestnik@stgmu.ru
The journal is included into The list of leading scientific periodicals.
The journal is included into VINITI database and is registered in Electronic scientific library.
The journal is indexed by SCOPUS, Ulrich's International Periodicals Directory.
[Reviews]
Mikael Manvelyan; Eleonora Manvelyan; Vladimir Baturin;
The features of the effect of quinazoline and quinazolinone derivatives with various substituents on the nervous and cardiovascular systems are considered. Natural and synthesized compounds with neurotropic activity (hypnotic, sedative, anticonvulsant, psychotropic, analgesic effects), antioxidant and antihypoxant effects, neuro- and cardioprotective, antiischemic effects are discussed. Data analysis of the other types of protective activity of quinazoline and quinazolinone derivatives are presented.
References:
1. Alagarsamy V., Chitra K., Saravanan G., Viswas R., Sulthana M. T., Narendhar B. An overview of quinazolines: Pharmacological significance and recent developments. Eur. J. Med. Chem. 2018;151:628-685. https://doi.org/10.1016/j.ejmech.2018.03.076
2. Gheidari D., Mehrdad M., Maleki S. The quinazoline-2,4(1H,3H)-diones skeleton: A key intermediate in drug synthesis. Sustainable Chemistry and Pharmacy. 2022;27:100696. https://doi.org/10.1016/j.scp.2022.100696
3. Huang C. J., Huang W. C., Lin W. T., Shu L. H., Sheu J. R. [et al.]. Rutaecarpine, an Alkaloid from Evodia rutaecarpa, Can Prevent Platelet Activation in Humans and Reduce Microvascular Thrombosis in Mice: Crucial Role of the PI3K/Akt/GSK3β. Signal Axis through a Cyclic Nucleotides/VASP-Independent Mechanism. Int. J. Mol. Sci. 2021;22(20):11109. https://doi.org/10.3390/ijms222011109
4. Tian K. M, Li J. J., Xu S. W. Rutaecarpine: A promising cardiovascular protective alkaloid from Evodia rutaecarpa (Wu Zhu Yu). Pharmacol. Res. 2019;141:541-550. https://doi.org/10.1016/j.phrs.2018.12.019
5. Abbas M. W., Hussain M., Qamar M., Ali S., Shafiq Z. [et al.]. Antioxidant and Anti-Inflammatory Effects of Peganum harmala Extracts: An In Vitro and In Vivo Study. Molecules. 2021;26(19):6084. https://doi.org/10.3390/molecules26196084
6. Herraiz T., Guillén H., Arán V. J., Salgado A. Identification, occurrence and activity of quinazoline alkaloids in Peganum harmala. Food. Chem. Toxicol. 2017;103:261-269. https://doi.org/10.1016/j.fct.2017.03.010
7. Gavaraskar K., Dhulap S., Hirwani R. R. Therapeutic and cosmetic applications of Evodiamine and its derivatives – A patent review. Fitoterapia. 2015;106:22-35. https://doi.org/10.1016/j.fitote.2015.07.019
8. Guo W., Wang X., Zhang J., Zhang T., Lv H., Zhao C. Synthesis of ring opening of evodiamine derivatives and evaluation on their biological activity. Chem. Biol. Drug. Des. 2022;99(4):535-546. https://doi.org/10.1111/cbdd.13996
9. Oganesjan Je. T., Zolotyh D. S., Kodonidi I. P., Lysenko T. A. Quantitative relations structure – activity in a series of derivatives of quinazolinone-4, showing anti-inflammatory, analgesic and antipyretic activity. Voprosy biologicheskoj, medicinskoj i farmacevticheskoj himii. – Questions of biological, medical and pharmaceutical chemistry. 2013;1:24-29. (In Russ.).
10. Archinova T. Ju., Kodonidi I. P., Kuleshova S. A., Gjul’bjakova H. N., Maslovskaja E. A. Sovremennye problemy nauki i obrazovanija. – Modern problems of science and education. 2015;1-1:1851. Available at: https://science-education.ru/ru/article/view?id=18199. Accessed March 09, 2023. (In Russ.).
11. Hachatrjan D. S., Misjurin V. A., Baryshnikova M. A., Golubcova N. V., Kolotaev A. V., Matevosjan K. R. Quinazolinone derivatives for the treatment of neoplastic, parasitic and neurodegenerative diseases. Rossijskij bioterapevticheskij zhurnal. – Russian biotherapeutic journal. 2017;16(3):32-42. (In Russ.). https://doi.org/10.17650/1726-9784-2017-16-3-32-42
12. Manvelyan Е. А., Manvelyan M. М., Codоnidi I. P., Oganesyan E. T. Аnalgesic activity of new derivatives of quinazolinone-4. Medical News of North Caucasus.2017;12(3):307-311. https://doi.org/10.14300/mnnc.2017.12089
13. Manvelyan M. M., Manvelyan E. A., Baturin V. A., Shamik P. V. Anticataleptic activity of 2-substituted derivatives of 3(H)-quinazolin-4-one. Medical News of North Caucasus. 2021;16(2):191-193. https://doi.org/10.14300/mnnc.2021.16044
14. Manveljan Je. A., Manveljan M. M., Oganesjan Je. T., Kodonidi I. P., Chagarova S. A. [et al.]. Investigation of the spectrum of neurotropic activity of synthesized compounds – derivatives of quinazolinone-4. Jeksperimental’naja i klinicheskaja farmakologija. – Experimental and clinical pharmacology. 2018;81(S):151-152. (In Russ.).
15. Kodonidi I. P., Larskij M. V., Kodonidi M. I., Chirjapkin A. S. Celenapravlennyj sintez proizvodnyh hinazolin-4(3H)-ona i ih aciklicheskih predshestvennikov s zadannymi farmakologicheskimi svojstvami. Moskva: «Rusajns», 2022. (In Russ.).
16. Badolato M., Aiello F., Neamati N. 2,3-Dihydroquinazolin-4(1H)-one as a privileged scaffold in drug design. RSC Adv. 2018;8(37):20894-20921. https://doi.org/10.1039/c8ra02827c
17. Hammer H., Bader B. M., Ehnert C., Bundgaard C., Bunch L. [et al.]. A Multifaceted GABAA Receptor Modulator: Functional Properties and Mechanism of Action of the Sedative-Hypnotic and Recreational Drug Methaqualone (Quaalude). Mol. Pharmacol. 2015;88(2):401-420. https://doi.org/10.1124/mol.115.099291
18. Kitami Y., Takei H., Nagai Y., Fujita K., Miyama S. Coma and seizure caused by an afloqualone overdose. Pediat rics International. 2019;61:212-213. https://doi.org/10.1111/ped.13777
19. Wang P. F., Jensen A. A., Bunch L. From Methaqualone and Beyond: Structure-Activity Relationship of 6-, 7-, and 8-Substituted 2,3-Diphenyl-quinazolin-4(3H)-ones and in Silico Prediction of Putative Binding Modes of Quinazolin4(3H)-ones as Positive Allosteric Modulators of GABAA Receptors. ACS Chem. Neurosci. 2020;11(24):4362-4375. https://doi.org/10.1021/acschemneuro.0c00600
20. Voronin M. V., Abramova E. V., Verbovaya E. R., Vakhitova Y. V., Seredenin S. B. Chaperone-Dependent Mechanisms as a Pharmacological Target for Neuroprotection. Int. J. Mol. Sci. 2023;24(1):823. https://doi.org/10.3390/ijms24010823
21. Ugale V. G., Bari S. B. Structural Exploration of Quinazolin4(3H)-ones as Anticonvulsants: Rational Design, Synthesis, Pharmacological Evaluation, and Molecular Docking Studies. Arch. Pharm. (Weinheim). 2016;349(11):864-880. https://doi.org/10.1002/ardp.201600218
22. Kothayer H., Ibrahim S. M., Soltan M. K., Rezq S., Mahmoud S. S. Synthesis, in vivo and in silico evaluation of no vel 2,3-dihydroquinazolin-4(1H)-one derivatives as potential anticonvulsant agents. Drug Dev. Res. 2019;80(3):343-352. https://doi.org/10.1002/ddr.21506
23. Abuelizz H. A., Al-Salahi R. An overview of triazoloquinazolines: Pharmacological significance and recent developments. Bioorg. Chem. 2021;115:105263. https://doi.org/10.1016/j.bioorg.2021.105263
24. Colotta V., Lenzi O., Catarzi D., Varano F., Squarcialupi L. [et al.]. 3-Hydroxy-1H-quinazoline-2,4-dione derivatives as new antagonists at ionotropic glutamate receptors: molecular modeling and pharmacological studies. Eur. J. Med. Chem. 2012;54:470-482. https://doi.org/10.1016/j.ejmech.2012.05.036
25. Sahu M., Nerkar A., Chikhale H. U., Sawant S. In Silica Screening, Synthesis and Pharmacological Screening of Quinazolinones Containing Oxazepinone Ring as NMDA Receptor Antagonists for Anticonvulsant Activity: Part – I. J. Young Pharm. 2014;7:21-27. https://doi.org/10.5530/JYP.2015.1.5
26. Al Salem H. S., Mirgany T. O. Epilepsy and Quinazolinones: The Renewable Relationship. Open Access J. Pharm Res. 2019;3(4):125. https://doi.org/10.23880/oajpr-16000188
27. El Kayal W. M., Shtrygol S. Y., Zalevskyi S. V., Shark A. A., Tsyvunin V. V. [et al.]. Synthesis, in vivo and in silico anticonvulsant activity studies of new derivatives of 2-(2,4-dioxo-1,4-dihydroquinazolin-3(2H)-yl)acetamide. Eur. J. Med. Chem. 2019;180:134-142. https://doi.org/10.1016/j.ejmech.2019.06.085
28. Shtrygol S., Zalevskyi S., Mishchenko M., Shtrygol D., Severina H. [et al.]. Promising anticonvulsant N-[(2,4-dichlorophenyl) methyl]-2-(2,4-dioxo-1H-quinazolin-3-yl) acetamide: dose-dependent study and evaluation of anticonvulsant action spectrum in vivo and in silico. Ceska Slov. Farm. 2022;71(5):224-233. https://doi.org/10.15587/2519-4852.2022.253554
29. Dorsh D., Buhshtaller H.-P. Proizvodnye hinazolinona v kachestve ingibitorov PARP // Patent na izobretenie RU 2650107 C2. 09.04.2018. Available at: https://elibrary.ru/item.asp?id=41029985 . Accessed March 14, 2023. (In Russ.).
30. Li V.-Ch., Ljao B. Proizvodnoe hinazolinona, sposob ego poluchenija, farmacevticheskaja kompozicija i primenenie // Patent na izobretenie RU 2730500 C2. 24.08.2020. Available at: https://www.elibrary.ru/item.asp?id=43916393. Accessed March 15, 2023. (In Russ.).
31. Zayed M. F. Medicinal Chemistry of Quinazolines as Analgesic and Anti-Inflammatory Agents. Chem. Engineering. 2022;6:94. https://doi.org/10.3390/chemengineering6060094
32. Mjuller D. V., Mjen H. V. Proizvodnye 5-zameshhennogo hinazolinona, soderzhashhie ih kompozicii i sposoby ih primenenija // Patent na izobretenie RU 2617989. 02.05.2018. Available at: https://www.elibrary.ru/item.asp?id=3828105. Accessed March 15, 2023. (In Russ.).
33. Ritchi T. D., Kalsho Je. D., Brejn K. T., Dzjadulevich Je. K., Hart T. Proizvodnye hinazolinona, poleznye v kachestve vaniloidnyh antagonistov // Patent na izobretenie RU 2449995 C2. 10.05.2012. Available at: https://elibrary.ru/item.asp?id=37764094. Accessed March 14, 2023. (In Russ.).
34. Hachatrjan D. S., Belus’ S. K., Misjurin V. A., Baryshnikova M. A., Kolotaev A. V., Matevosjan K. R. Synthesis and properties of 1,2-dihydro-4(3H)-quinazolinones. Izvestija Akademii nauk. Serija himicheskaja. – Proceedings of the Academy of Sciences. Chemical series. 2017;6:1044-1058. (In Russ.).
35. Saravanan G., Alagarsamy V., Dineshkumar P. Synthesis, analgesic, anti-inflammatory and in vitro antimicrobial activities of some novel isoxazole coupled quinazolin-4(3H)-one derivatives. Arch. Pharm. Res. 2021;44:1-11. https://doi.org/10.1007/s12272-013-0262-8
36. Brazhko E. A. Biological activity of dialkoxy-substituted (quinolin-4-ylsulfanyl) carboxylic acids. Vestnik Belorusskogo gosudarstvennogo universiteta. Serija 2, Himija. Biologija. Geografija. – Bulletin of the Belarusian State University. Series 2, Chemistry. Biology. Geography. 2015;3:26-29. (In Russ.).
37. Bembenek S. D., Houkatt F. M., Leonard B. I. ml., Rouzen M. D., Tarantino K. T. [et al.]. Hinazolinony kak ingibitory prolilgidroksilazy // Patent na izobretenie RU 2528412 C2. 20.09.2014. Available at: https://elibrary.ru/item.asp?id=37804358. Accessed March 14, 2023. (In Russ.).
38. Soliman A. M., Karam H. M., Mekkawy M. H., Ghorab M. M. Antioxidant activity of novel quinazolinones bearing sulfonamide: Potential radiomodulatory effects on liver tissues via NF-κB/ PON1 pathway. Eur. J. Med. Chem. 2020;197:112333. https://doi.org/10.1016/j.ejmech.2020.112333
39. Manveljan Je. A., Manveljan M. M., Oganesjan Je. T., Kodonidi I. P. Antihypoxant action of hydroxy- and methoxyphenyl derivatives of quinazolin4(3H)-one. Jeksperimental’naja i klinicheskaja farmakologija. – Experimental and clinical pharmacology.2019:82(4):16-19. (In Russ.). https://doi.org/10.30906/0869-2092-2019-82-4-16-19
40. Mravljak J., Slavec L., Hrast M., Sova M. Synthesis and Evaluation of Antioxidant Properties of 2-Substituted Quinazolin-4(3H)-ones. Molecules. 2021;26(21):6585. https://doi.org/10.3390/molecules26216585
41. Radchenko E. V., Tarakanova A. S., Karlov D. S., Lavrov M. I., Paljulin V. Glutamate AMPA receptor ligands: mechanisms of action and new chemotypes. Biomedicinskaja himija. – Biomedical Chemistry. 2021;67(3):187-200. (In Russ.). https://doi.org/10.18097/PBMC20216703187
42. Ponsaerts L., Alders L., Schepers M., de Oliveira R. M. W., Prickaerts J. [et al.]. Neuroinflammation in Ischemic Stroke: Inhibition of cAMP-Specific Phosphodiesterases (PDEs) to the Rescue. Biomedicines. 2021;9(7):703. https://doi.org/10.3390/biomedicines9070703
43. Khan H., Tiwari C., Grewal A. K., Singh T. G., Chauhan S., Batiha G. E. Pharmacological modulation of phosphodiesterase-7 as a novel strategy for neurodegenerative disorders. Inflammopharmacol. 2022;30:2051-2061. https://doi.org/10.1007/s10787-022-01072-1
44. Long S., Resende D., Kijjoa A., Silva A. M. S., Fernandes R. [et al.]. Synthesis of new proteomimetic quinazolinone alkaloids and evaluation of their neuroprotective and antitumor effects. Molecules. 2019;24(3):534. https://doi.org/10.3390/molecules24030534
45. Singh R. N., Singh N. N. Mechanism of Splicing Regulation of Spinal Muscular Atrophy Genes. Adv. Neurobiol. 2018;20:31-61. https://doi.org/10.1007/978-3-319-89689-2_2
46. Ву Чи Б., Оулманн К., Перни Р. Б., Уайт Б. Хиназолинон, хинолон и родственные аналоги в качестве модуляторов сиртуина // Патент на изобретение RU 2519779 C2. 20.06.2014. Режим доступа: https://elibrary.ru/item.asp?id=37800228. Ссылка активна на 14.03.2023. [Vu
Chi B., Oulmann K., Perni R. B., Uajt B. Hinazolinon, hinolon i rodstvennye analogi v kachestve moduljatorov sirtuina // Patent na izobretenie RU 2519779 C2. 20.06.2014. Available at: https://elibrary.ru/item.asp?id=37800228. Accessed March 14, 2023. (In Russ.)].
47. Shinoj N. R. Farmacevticheskie kompozicii zameshhennyh hinazolinonov // Patent na izobretenie RU № 2640115. 26.12.2017. Available at: https://elibrary.ru/item.asp?id=38291730. Accessed March 14, 2023. (In Russ.).
48. Chiriapkin A. S., Kodonidi I. P., Pozdnyakov D. I. Synthesis and evaluation of cerebroprotective activity of novel 6,7-dimethoxyquinazolin-4(3H)-one derivatives containing residues of amino acids and dipeptides. Chimica Techno. Acta. 2022;9(2):20229212. https://doi.org/10.15826/chimtech.2022.9.2.12
49. Borisov A. V., Volotova E. V., Ozerov A. A., Kurkin D. V., Bakulin D. A. [et al.]. Cerebroprotective activity of quinazolin-4(3n)-one derivatives with a guanidine substituent in rats with occlusion of the common carotid arteries. Vestnik Volgogradskogo gosudarstvennogo medicinskogo universiteta. – Bulletin of the Volgograd State Medical University. 2021;79(3):97-102. (In Russ.). https://doi.org/10.19163/1994-9480-2021-3(79)-97-102
50. Wu K. J., Yu S. J., Shia K. S., Wu C. H., Song J. S. [и др.]. A novel CXCR4 antagonist CX549 induces neuroprotection in stroke brain. Cell. Transplant. 2017;26(4):571-583. https://doi.org/10.3727/096368916X693563
51. Hejazi L., Rezaee E., Tabatabai S. A. Quinazoline-4(3H)-one derivatives as novel and potent inhibitors of soluble epoxide hydrolase: Design, synthesis and biological evaluation. Bioorg. Chem. 2020;99:103736. https://doi.org/10.1016/j.bioorg.2020.103736
52. Kuo Y. M., Lee Y. H. Epoxyeicosatrienoic acids and soluble epoxide hydrolase in physiology and diseases of the central nervous system. Chin. J. Physiol. 2022;65(1):1-11. https://doi.org/10.4103/cjp.cjp_80_21
53. Nhu N. T., Li Q., Liu Y., Xu J., Xiao S. Y., Lee S. D. Effects of Mdivi-1 on Neural Mitochondrial Dysfunction and Mitochondria-Mediated Apoptosis in Ischemia-Reperfusion Injury After Stroke: A Systematic Review of Preclinical Studies. Front. Mol. Neurosci. 2021;14:778569. https://doi.org/10.3389/fnmol.2021.778569
54. Liu X., Song L., Yu J., Huang F., Li Y., Ma C. Mdivi-1: a promising drug and its underlying mechanisms in the treatment of neurodegenerative diseases. Histol. Histopathol. 2022;37(6):505-512. https://doi.org/10.14670/HH-18-443
55. Guo P., Fang Y., Feng M., Zhao X., Wang S. [и др.]. Case report: Prazosin augmentation for treating comorbid treatment-resistant depression and chronic post-traumatic stress disorder. Front Psychiatry. 2022;13:803220. https://doi.org/10.3389/fpsyt.2022.803220
56. Supuran C. T. Carbonic anhydrase inhibitors and their potential in a range of therapeutic areas. Expert Opin. Ther. Pat. 2018;28(10):709-712. https://doi.org/10.1080/13543776.2018.1523897
57. Ito A., Zhao Q., Tanaka Y., Yasui M., Katayama R. [и др.]. Metolazone upregulates mitochondrial chaperones and extends lifespan in Caenorhabditis elegans. Biogerontology. 2021;22:119-131. https://doi.org/10.1007/s10522-020-09907-6
58. Geldenhuys C., van den Heuvel L. L., Steyn P., Seedat S. Pharmacological Management of Nightmares Associated with Posttraumatic Stress Disorder. CNS Drugs. 2022;36(7):721-737. https://doi.org/10.1007/s40263-022-00929-x
59. Patanè S. Insights into cardio-oncology: Polypharmacology of quinazoline-based α1-adrenoceptor antagonists. World J. Cardiol. 2015;7(5):238-242. https://doi.org/10.4330/wjc.v7.i5.238
60. Pan Je. S., Pahomova A. V., Ermakova N. N., Afanas’ev S. A., Rebrova T. Ju. [et al.]. Age features of the effects of ketanserin in experimental liver cirrhosis. Bjulleten’ jeksperimental’noj biologii i mediciny. – Bulletin of experimental biology and medicine. 2022;174(8):166-171. (In Russ.). https://doi.org/10.47056/0365-9615-2022-174-8-166-171
Keywords: quinazolines, quinazolinones, neurotropic, cardiotropic, angiotropic, protective activity