Site search
Correspondence address
310 Mira Street, Stavropol, Russia, 355017
Tel
+7 865 2352511, +7 865 2353229.
E-mail
medvestnik@stgmu.ru
The journal is included into The list of leading scientific periodicals.
The journal is included into VINITI database and is registered in Electronic scientific library.
The journal is indexed by SCOPUS, Ulrich's International Periodicals Directory.
[Reviews]
Vladimir Pokrovsky; Alexander Nikolaevich Ardelyan; Nanar Armoevna Harutyunyan; Bela Sultanmuratovna Tashu; Oleg Yaroslavovich Shcherbakov; Stanislav Sergeevich Pilipenko;
The existing methods of functional evaluation of nerve regeneration were analyzed in order to select a suitable method for replacing the defect with a biosynthetic analogue. The search of literary sources is carried out in the databases eLIBRARY and PubMed with a selection of foreign articles published over the past 10 years, whichinclude the designs of research and methods of functional evaluation of the nerve regeneration process along with classical morphological methods. Analysis of the presented works allowed making a choice in favor of a combination of minimally invasive and invasive methods. The minimally invasive approach is represented by the neuromyographic method of signal evaluation in the muscle in response to the percutaneous stimulation of the sciatic nerve projection point. As an invasive approach, it is planned to use signal recording directly in the nerve, i.e., the evaluation of a neurogram. The basis for the choice of neurography was the results of an experiment on the sciatic nerve of an anesthetized rat using the anode block as a model of nerve damage. Combining these methods can improve the functional evaluation of nerve regeneration when a defect is replaced by a biosynthetic analogue.
References:
1. Pedrini F. A., Boriani F., Bolognesi F., Fazio N., Marchetti Cl., Baldini N. Cell-Enhanced Acellular Nerve Allografts for Peripheral Nerve Reconstruction: A Systematic Review and a Meta-Analysis of the Literature. Neurosurgery.2019;85(5):575-604. https://doi.org/10.1093/neuros/nyy374
2. Wang Y., Zhao Z., Ren Z., Zhao B., Zhang L. [et al.]. Recellularized nerve allografts with differentiated mesenchymal stem cells promote peripheral nerve regeneration. Neurosci. Lett. 2012;514(1):96-101. https://doi.org/10.1016/j.neulet.2012.02.066
3. Luo H., Zhu B., Zhang Y., Jin Y., Yan J. Tissue-engineered nerve constructs under a microgravity system for peripheral nerve regeneration. Tissue Eng. Part A. 2015;21(1-2):267-276. https://doi.org/10.1089/ten.tea.2013.0565
4. Zhu Z., Zhou X., He B., Dai T., Zheng C. [et al.]. Ginkgo Biloba Extract (EGb 761) Promotes peripheral nerve regeneration and neovascularization after acellular nerve allografts in a rat model. Cell. Mol. Neurobiol. 2015;35(2):273-282. https://doi.org/10.1007/s10571-014-0122-1
5. Hooijmans C. R., Rovers M. M., De Vries R. B., Leenaars M., Ritskes-hoitinga M., Langendam M. W. SYRCLE’s risk of bias tool for animal studies. BMC Med. Res. Methodol. 2014;14(1):1-9. https://doi.org/10.1186/1471-2288-14-43
6. Sowa Y., Imura T., Numajiri T., Nishino K., Fushiki S. Adipose-derived stem cells produce factors enhancing peripheral nerve regeneration: influence of age and anatomic site of origin. Stem. Cells Dev. 2012;21(11):1852-1862. https://doi.org/10.1089/scd.2011.0403
7. Stratton J. A., Kumar R., Sinha S., Shah P., Stykel M. [et al.]. Purification and characterization of schwann cells from adult human skin and nerve. Eneuro. New Res. 2017;4:1-15. https://doi.org/10.1523/ENEURO.0307-16.2017
8. Kim H. S., Lee J., Lee D. Y., Kim Y. D., Kim J. Y. [et al.]. Schwann cell precursors from human pluripotent stem cells as a potential therapeutic target for myelin repair. Stem. Cell. Rep. 2017;8(6):1714-1726. https://doi.org/10.1016/j.stemcr.2017.04.011
9. Khuong H. T., Kumar R., Senjaya F., Grochmal J., Ivanovic A. [et al.]. Skin derived precursor Schwann cells improve behavioral recovery for acute and delayed nerve repair. Exp. Neurol. 2014;254:168-179. https://doi.org/10.1016/j.expneurol.2014.01.002
10. Wang Y., Li W. Y., Jia H., Zhai F. G., Qu W. R. [et al.]. KLF7-transfected Schwann cell graft transplantation promotes sciatic nerve regeneration. Neuroscience.2017;340:319-332. https://doi.org/10.1016/j.neuroscience.2016.10.069
11. Jesuraj N. J., Santosa K. B., Macewan M. R., Moore A. M., Kasukurthi R. [et al.]. Schwann cells seeded in acellular nerve grafts improve functional recovery. Muscle Nerve.2014;49(2):267-276. https://doi.org/10.1002/mus.23885
12. Saheb-Al-Zamani M., Yan Y., Farber S. J., Hunter D. A., Newton P. [et al.]. Limited regeneration in long acellular nerve allografts is associated with increased Schwann cell senescence. Exp. Neurol. 2013;247:165-177. https://doi.org/10.1016%2Fj.expneurol.2013.04.011
13. Zhang C., Lv G. Repair of sciatic nerve defects using tissue engineered nerves. Neural. Regen. Res. 2013;25(821):637-647. https://doi.org/10.3969/j.issn.1673-5374.2013.21.007
14. Zhou L. N., Zhang J. W., Liu X. L., Zhou L. H. Co-Graft of bone marrow stromal cells and Schwann cells into acellular nerve scaffold for sciatic nerve regeneration in rats. J. Oral Maxillofac. Surg. 2015;73(8):1651-1660. https://doi.org/10.1016/j.joms.2015.02.013
15. Zhang Y. R., Ka K., Zhang G. C., Zhang H., Shang Y. [et al.]. Repair of peripheral nerve defects with chemically extracted acellular nerve allografts loaded with neurotrophic factors-transfected bone marrow mesenchymal stem cells. Neural. Regen. Res. 2015;10(9):1498-506. https://doi.org/10.4103%2F1673-5374.165523
16. Li Y. J., Zhao B. L., Lv H. Z., Qin Z. G., Luo M. Acellular allogeneic nerve grafting combined with bone marrow mesenchymal stem cell transplantation for the repair of long-segment sciatic nerve defects: biomechanics and validation of mathematical models. Neural. Regen. Res. 2016;11(8):1322-1326. https://doi.org/10.4103/1673-5374.189198
17. Kaizawa Y., Kakinoki R., Ikeguchi R., Ohta S., Noguchi T. [et al.]. A nerve conduit containing a vascular bundle and implanted with bone marrow stromal cells and decellularized allogenic nerve matrix. Cell. Transplant. 2017;26(2):215-228. https://doi.org/10.3727/096368916x692951
18. Jiang C. Q., Hu J., Xiang J. P., Zhu J. K., Liu X. L., Luo P. Tissue-engineered rhesus monkey nerve grafts for the repair of long ulnar nerve defects: Similar outcomes to autologous nerve grafts. Neural. Regen. Res. 2016;11(11):1845-1850. https://doi.org/10.4103/1673-5374.194757
19. Xiang F., Wei D., Yang Y., Chi H., Yang K., Sun Y. Tissue-engineered nerve graft with tetramethylpyrazine for repair of sciatic nerve defects in rats. Neurosci. Lett. 2017;638:114-120. https://doi.org/10.1016/j.neulet.2016.12.026
20. Jia H., Wang Y., Tong X. J., Liu G. B., Li Q. [et al.]. Sciatic nerve repair by acellular nerve xenografts implanted with BMSCs in rats xenograft combined with BMSCs. Synapse.2012;66(3):256-269. https://doi.org/10.1002/syn.21508
21. Wang Y., Jia H., Li W. Y., Tong X. J., Liu G. B., Kang S. W. Synergistic effects of bone mesenchymal stem cells and chondroitinase ABC on nerve regeneration after acellular nerve allograft in rats. Cell. Mol. Neurobiol. 2012;32(3):361-371. https://doi.org/10.1007/s10571-011-9764-4
22. Pang C. J., Tong L., Ji L. L., Wang Z., Zhang X. [et al.]. Synergistic effects of ultrashort wave and bone marrow stromal cells on nerve regeneration with acellular nerve allografts. Synapse. 2013;67(10):637-647. https://doi.org/10.1002/syn.21669
23. Gao S., Zheng Y., Cai Q., Deng Z., Yao W. [et al.]. Combination of acellular nerve graft and Schwann cells-like cells for rat sciatic nerve regeneration. Neural. Plast. 2014;2014:139085. https://doi.org/10.1155/2014/139085
24. Wang Y., Jia H., Li W. Y., Li X. G., Deng L. [et al.]. Molecular examination of bone marrow stromal cells and chondroitinase ABC-assisted acellular nerve allograft for peripheral nerve regeneration. Exp. Ther. Med. 2016;12(4):1980-1992. https://doi.org/10.3892%2Fetm.2016.3585
25. Wang H., Wu J., Zhang X., Ding L., Zeng Q. Study of synergistic role of allogenic skin-derived precursor differentiated Schwann cells and heregulin-1 in nerve regeneration with an acellular nerve allograft. Neurochem. Int. 2016;97:146-153. https://doi.org/10.1016/j.neuint.2016.04.003
26. Godinho M., Teh L., Pollett M. A., Goodman D., Hodgetts S. I. [et al.]. Immunohistochemical, ultrastructural and functional analysis of axonal regeneration through peripheral nerve grafts containing schwann cells expressing BDNF, CNTF or NT3. PLoS One. 2013;8(8):e69987. https://doi.org/10.1371/journal.pone.0069987
27. Zhang Y. R., Zhang H., Zhang G. C., Ka K., Huang W. H. Combining acellular nerve allografts with brain-derived neurotrophic factor transfected bone marrow mesenchymal stem cells restores sciatic nerve injury better than either intervention alone. Neural. Regen. Res. 2014;9(20):1814-1819. https://doi.org/10.4103%2F1673-5374.143427
28. Meder T., Prest T., Skillen C., Marchal L., Yupanqui V. T. [et al.]. Nerve-specific extracellular matrix hydrogel promotes functional regeneration following nerve gap injury. NPJ Regen. Med. 2021;6(1):69. https://doi.org/10.1038/s41536-021-00174-8
29. Wang D., Huang X., Fu G., Gu L., Liu X. [et al.]. A simple model of radial nerve injury in the rhesus monkey to evaluate peripheral nerve repair. Neural. Regen. Res. 2014;9(10):1041-1046. https://doi.org/10.4103%2F1673-5374.133166
30. Khezri M. K., Turkkan А., Koc С., Salman В., Levent Р. [et al.]. Uridine treatment improves nerve regeneration and functional recovery in a rat model of sciatic nerve injury. Turk Neurosurgery. 2022;32(5). https://doi.org/10.5137/1019-5149.jtn.36142-21.2
31. Zhao Z., Wang Y., Peng J., Ren Z., Zhang L. [et al.]. Improvement in nerve regeneration through a decellularized nerve graft by supplementation with bone marrow stromal cells in fibrin. Cell. Transplant. 2014;23(1):97-110. https://doi.org/10.3727/096368912x658845
Keywords: neurogram, graft, distal end, proximal end