logo
Medical news
of the North Caucasus
Scientific journal
Mass media registration certificate dated December 7, 2006.
Series ПИ #ФС 77-26521.
Federal service for surveillance over non-violation of the legislation in the sphere of mass communications and protection of cultural heritage.
ISSN 2073-8137
rus
русский
eng
english

Site search



Correspondence address
310 Mira Street, Stavropol, Russia, 355017

Tel
+7 865 2352511, +7 865 2353229.

E-mail
medvestnik@stgmu.ru

Influences of intrahypothalamic administration of microrna inhibitors and mimetics on blood plasma biomarkers with aging of the rat

[Original research] [Experimental medicine]
Petr Mikhailovich Maslyukov; Valentina Vyacheslavovna Porseva; Polina Aleksandrovna Anfimova; Lidiya Georgievna Pankrasheva; Andrey Anatolyevich Baranov; Nikolay Yurievich Levshin; Konstantin Yurievich Moiseev;

The effect of let-7a-5p, miR-9a-3p, miR-132-3p, miR-218a-5p microRNA inhibitors and mimetics, when administered into the dorsomedial nucleus of the hypothalamus (DNA), on markers of age-related changes in blood plasma in 3-month-old and 24-month-old male rats was studied. In 24-month-old control rats, the content of C-reactive protein (CRP) increased, and the level of myoglobin decreased compared to 3-month old animals. With the introduction of miRNA inhibitors, the level of CRP significantly increased, and the content of myoglobin decreased, and the introduction of miRNA mimetics led to the reverse changes. We did not find significant differences in the content of somatotropic hormone and testosterone between the control and experimental groups as well as between 3-month-old and 24-month-old animals.

Download

References:
1. Masliukov P. M., Nozdrachev A. D. Hypothalamic Regulatory Mechanisms of Aging. J. Evol. Biochem. Phys. 2021;57:473-491. https://doi.org/10.1134/S0022093021030030
2. Xiao Y. Z., Yang M., Xiao Y., Guo Q., Huang Y. [et al.]. Reducing Hypothalamic Stem Cell Senescence Protects against Aging-Associated Physiological Decline. Cell. Metab. 2020;31(3):534-548.e5. https://doi.org/10.1016/j.cmet.2020.01.002
3. Liu T., Xu Y., Yi C. X., Tong Q., Cai D. The hypothalamus for whole-body physiology: from metabolism to aging. Protein Cell. 2022;13(6):394-421. https://doi.org/10.1007/s13238-021-00834-x
4. Moiseev K. Y., Vishnyakova P. A., Porseva V. V., Masliukov A. P., Spirichev A. A. [et al.]. Changes of nNOS expression in the tuberal hypothalamic nuclei during ageing. Nitric Oxide. 2020;100-101:1-6. https://doi.org/10.1016/j.niox.2020.04.002
5. Vishnyakova P. A., Moiseev K. Y., Spirichev A. A., Emanuilov A. I., Nozdrachev A. D., Masliukov P. M. Expression of calbindin and calretinin in the dorsomedial and ventromedial hypothalamic nuclei during aging. Anat. Rec. (Hoboken). 2021;304(5):1094-1104. https://doi.org/10.1002/ar.24536
6. Moiseev K. Y., Spirichev A. A., Vishnyakova P. A., Pankrasheva L. G., Masliukov P. M. Changes of discharge properties of neurons from dorsomedial hypothalamic nuclei during aging in rats. Neurosci. Lett. 2021;762:136168. https://doi.org/10.1016/j.neulet.2021.136168
7. Kambe Y., Nguyen T. T., Yasaka T., Nguyen T. T., Sameshima Y. [et al.]. The Pivotal Role of Neuropeptide Crosstalk from Ventromedial-PACAP to Dorsomedial Galanin in the Appetite Regulation in the Mouse Hypothalamus. Mol. Neurobiol. 2022. https://doi.org/10.1007/s12035-022-03084-y
8. Zhang Y., Kim M. S., Jia B., Yan J., Zuniga-Hertz J. P. [et al.]. Hypothalamic stem cells control ageing speed partly through exosomal miRNAs. Nature. 2017;548(7665):52-57. https://doi.org/10.1038/nature23282
9. Porseva V. V., Levshin N. Yu., Moiseev K. Yu., Pankrasheva L. G., Baranov A. A. [et al.]. Let-7a, mir-9, mir-132 and mir-218 microRNA Expression in the Dorsomedial and Ventromedial Hypothalamic Nuclei during Aging in Rats. Adv. Gerontol. 2021;11(4):346-350. https://doi.org/10.1134/S207905702104010X
10. Gordon C. J., Rowsey P. J., Bishop B. L., Ward W. O., Macphail R. C. Serum biomarkers of aging in the Brown Norway rat. Exp. Gerontol. 2011;46(11):953-957. https://doi.org/10.1016/j.exger.2011.07.006
11. Tian Z. Ageing-Associated Transcriptomic Alterations in Peri-Implantitis Pathology: A Bioinformatic Study. Dis. Markers. 2022;2022:8456968. https://doi.org/10.1155/2022/8456968
12. Tresguerres J. Á. F., Fernández-Tresguerres I., Viña J., Rancan L., Paredes S. D. [et al.]. Effects of GH on the Aging Process in Several Organs: Mechanisms of Action. Int. J. Mol. Sci. 2022;23(14):7848. https://doi.org/10.3390/ijms23147848
13. Neves J., Sousa-Victor P. Regulation of inflammation as an anti-aging intervention. FEBS J. 2020;287(1):43-52. https://doi.org/10.1111/febs.15061
14. Jiang S. A Regulator of Metabolic Reprogramming: MicroRNA Let-7. Transl. Oncol. 2019;12(7):1005-1013. https://doi.org/10.1016/j.tranon.2019.04.013
15. Subramanian M., Hyeon S. J., Das T., Suh Y. S., Kim Y. K. [et al.]. UBE4B, a microRNA-9 target gene, promotes autophagy-mediated Tau degradation. Nat. Commun. 2021;12(1):3291. https://doi.org/10.1038/s41467-021-23597-9
16. Cai D., Khor S. «Hypothalamic Microinflammation» Paradigm in Aging and Metabolic Diseases. Cell. Metab. 2019;30(1):19-35. https://doi.org/10.1016/j.cmet.2019.05.021
17. Sato K., Osaka E., Fujiwara K., Fujii R., Takayama T. [et al.]. miRNA‑218 targets multiple oncogenes and is a therapeutic target for osteosarcoma. Oncol. Rep. 2022;47(5):92. https://doi.org/10.3892/or.2022.8303
18. Li M., Guo Q., Cai H., Wang H., Ma Z., Zhang X. miR218 regulates diabetic nephropathy via targeting IKK-β and modulating NK-κB-mediated inflammation. J. Cell. Physiol. 2020;235(4):3362-3371. https://doi.org/10.1002/jcp.29224
19. Dong W., Gao W., Yan X., Sun Y., Xu T. microRNA-132 as a negative regulator in NF-κB signaling pathway via targeting IL-1β in miiuy croaker. Dev. Comp. Immunol. 2021;122:104113. https://doi.org/10.1016/j.dci.2021.104113

Keywords: hypothalamus, aging, microRNA, blood plasma biomarkers


Founders:
Stavropol State Medical Academy
Pyatigorsk State Research Institute of Balneotherapeutics
Pyatigorsk State Pharmaceutical Academy