Site search
Correspondence address
310 Mira Street, Stavropol, Russia, 355017
Tel
+7 865 2352511, +7 865 2353229.
E-mail
medvestnik@stgmu.ru
The journal is included into The list of leading scientific periodicals.
The journal is included into VINITI database and is registered in Electronic scientific library.
The journal is indexed by SCOPUS, Ulrich's International Periodicals Directory.
[Original research] [Orthopedics and traumatology]
Stas Selitsky;
Artificial Intelligence (AI) allows medical practitioners to evaluate and reduce the risks of life-threatening patient outcomes. This paper analyses current concepts of Bayesian AI developed to accurately assess trauma severity. It has shown that the proposed Bayesian concept overcomes the «gold» standard used for trauma care in the US and UK emergency units. The examination has been conducted regarding prediction accuracy estimated on the largest trauma patient repository.
References:
1. The American College of Surgeons. National Trauma Data Bank. 2014. Available at: https://www.facs.org/qualityprograms/trauma/quality/national-trauma-data-bank/
2. Schetinin V., Jakaite L. Classification of newborn EEG maturity with Bayesian averaging over decision trees. Expert systems with Applications. 2012;39(10):9340-9347.
3. Constantinou A. C., Fenton N., Marsh W., Radlinski L. From complex questionnaire and interviewing data to intelligent Bayesian network models for medical decision support. Artif. Intell. Med. 2016:67(C):75-93. https://doi.org/10.1016/j.artmed.2016.01.002
4. Schetinin V., Jakaite L., Krzanowski W. J. Prediction of survival probabilities with Bayesian decision trees. Expert systems with Applications. 2013;40(14):5466-5476.
5. Negrin M. A., Nam J., Briggs A. H. Bayesian solutions for handling uncertainty in survival extrapolation. Medical Decision Making. 2017;37(4):367-376. https://doi.org/10.1177/0272989X16650669
6. Schechner Z., Luo G., Kaufman J. J., Siffert R. S. A poisson process model for hip fracture risk. Med. Biol. Eng. Comput. 2010;48(8):799-810. https://doi.org/10.1007/s11517-010-0638-6
7. Jakaite L., Schetinin V. Feature selection for Bayesian evaluation of trauma death risk. NBC. 2008:123-126.
8. Schetinin V., Jakaite L., Jakaitis J., Krzanowski W. Bayesian decision trees for predicting survival of patients: A study on the US national trauma data bank. Computer Methods and Programs in Biomedicine. 2013;111(3):602- 612.
9. Rogers F., Osler T., Krasne M., Rogers A., Bradburn E. [et al.] Has TRISS become an anachronism? A comparison of mortality between the National Trauma Data Bank and major trauma outcome study databases. Journal of Trauma and Acute Care. 2012;73(2):326–331. https://doi.org/10.1097/TA.0b013e31825a7758
10. Schetinin V., Jakaite L., Krzanowski W. Bayesian averaging over decision tree models: an application for estimating uncertainty in trauma severity scoring. International Journal of Medical Informatics. 2013;112:6-14.
11. Korb K. B., Nicholson A. E. Bayesian Artificial Intelligence, 2nd edition. CRC Press, Inc., Boca Raton, FL, USA, 2010.
12. Lefering R., Huber-Wagner S., Nienaber U., Maegele M., Bouillon B. Update of the trauma risk adjustment model of the trauma register: the revised injury severity classification, version II. Critical Care. 2014;18(5):476-478. https://doi.org/10.1186/s13054-014-0476-2
13. Lu H. Y., Li T. C., Tu Y. K., Tsai J. C., Lai H. S. [et al.] Predicting long-term outcome after traumatic brain injury using repeated measurements of Glasgow coma scale and data mining methods. J. Med. syst. 2015;39(2):14. https://doi.org/10.1007/s10916-014-0187-x
14. Patil B. M., Joshi R. C., Toshniwal D., Biradar S. A new approach: Role of data mining in prediction of survival of burn patients. Journal of Medical systems.2011;35(6):1531-1542. https://doi.org/10.1007/s10916-010-9430-2
Keywords: trauma survival prediction, trauma severity, uncertainty estimation, Bayesian AI