logo
Medical news
of the North Caucasus
Scientific journal
Mass media registration certificate dated December 7, 2006.
Series ПИ #ФС 77-26521.
Federal service for surveillance over non-violation of the legislation in the sphere of mass communications and protection of cultural heritage.
ISSN 2073-8137
rus
русский
eng
english

Site search



Correspondence address
310 Mira Street, Stavropol, Russia, 355017

Tel
+7 865 2352511, +7 865 2353229.

E-mail
medvestnik@stgmu.ru

Modern methods of chondroplasty and possible stimulation of the regenerative processes of articular cartilage (part 1)

[Reviews]
Vladimir Ivanovich Telpukhov; Andrey Vladimirovich Garkavi; Andrey Stanislavovich Chagin; Alexey Vladimirovich Lychagin; Vladimir Nikolenko; Gennady Mikhailovich Kavalersky; Pavel Igorevich Petrov; Dmitry Romanov;

The first part of the article analyzes modern approaches to the onset and development of osteoarthritis, assesses the current state of the art in the treatment of articular cartilage defects. The results of the application of some methods are discussed: surgical ones – corrective osteotomy, osteoperforation (abrasive chondroplasty, subchondral tunneling, microfracturing), membranoplasty, mosaic osteochondral autoplasty, laser treatment of the articular surface; injection techniques – the use of hyaluronic acid, platelet-rich plasma.

Download

References:
1. Pereira D., Peleteiro B., Araújo J., Branco J., Santos R. A., Ramos E. The effect of osteoarthritis definition on prevalence and incidence estimates: a systematic review. Osteoarthritis Cartilage. 2011;19(11):1270-1285. https://doi.org/10.1016/j.joca.2011.08.009
2. Millerand M., Berenbaum F., Jacques C. Danger signals and inflammaging in osteoarthritis. Clin. Exp. Rheumatol. 2019;37 Suppl 120(5):48-56.
3. Xia B., Di Chen, Zhang J., Hu S., Jin H., Tong P. Osteoarthritis pathogenesis: a review of molecular mechanisms. Calcif. Tissue Int. 2014;95(6):495-505. https://doi.org/10.1007/s00223-014-9917-9
4. Skou S. T., Roos E. M. Physical therapy for patients with knee and hip osteoarthritis: supervised, active treatment is current best practice. Clin. Exp. Rheumatol. 2019;37 Suppl 120(5):112-117
5. Barnett R. Osteoarthritis. Lancet. 2018;391(10134):1985. https://doi.org/10.1016/S0140-6736(18)31064-X
6. He M., Zhong X., Li Z., Shen K., Zeng W. Progress in the treatment of knee osteoarthritis with high tibial osteotomy: a systematic review. Syst. Rev. 2021;10(1):56. https://doi.org/10.1186/s13643-021-01601-z
7. Shah S. S., Lee S., Mithoefer K. Next-Generation Marrow Stimulation Technology for Cartilage Repair: Basic Science to Clinical Application. JBJS Rev. 2021;9(1);e20. https://doi.org/10.2106/JBJS.RVW.20.00090
8. Brouwer R. W., Raaij van T. M., Bierma-Zeinstra S. M., Verhagen A. P., Jakma T. S., Verhaar J. A. Osteotomy for treating knee osteoarthritis. Cochrane Database Syst. Rev. 2007;(3):CD004019. https://doi.org/10.1002/14651858.CD004019.pub3
9. Da Cunha R. J., Kraszewski A. P., Hillstrom H. J., Fragomen A. T., Rozbruch S. R. Biomechanical and functional improvements gained by proximal tibia osteotomy correction of genu varum in patients with knee pain. HSS J. 2020;16(1):30-38. https://doi.org/10.1007/s11420-019-09670-6
10. Duerr R. A., Harangody S., Magnussen R. A., Kaeding C. C., Flanigan D. C. Technique for medial closing-wedge proximal tibia osteotomy in the valgus knee. Arthroscopy Techniq. 2020;9(7):925-933. https://doi.org/10.1016/j.eats.2020.03.008
11. Beckmann R., Lippross S., Hartz C., Tohidnezhad M., Ferreira M. S. [et al]. Abrasion arthroplasty increases mesenchymal stem cell content of postoperative joint effusions. BMC Musc. Dis. 2015;16:250. https://doi.org/10.1186/s12891-015-0705-0
12. Lazishvili G. D., Egiazaryan K. A., Ratyev A. P., Gordienko D. I., Bug-Gusaim A. B. [et al.]. Hybrid bone-cartilage transplantation is an innovative technology for the surgical treatment of extensive bone-cartilage defects of the knee joint. Khirurgicheskaya praktika. – Surgical Practice. 2020;(4):10-17. (In Russ.). https://doi.org/10.38181/issn2223-2427.2019.4.10-17
13. Stupina T. A., Makushin V. D., Stepanov M. A. Experimental morphological study of the effects of subchondral tunnelization and bone marrow stimulation on articular cartilage regeneration. Bull. Exp. Biol. Med. 2012;153(2):289-293. https://doi.org/10.1007/s10517-012-1697-5
14. Field R. E., Rajakulendran K., Strambi F. Arthroscopic grafting of chondral defects and subchondral cysts of the acetabulum. Hip. Int. 2011;21(4):479-486. https://doi.org/10.5301/HIP.2011.8583
15. Weber A. E., Locker P. H., Mayer E. N., Cvetanovich G. L., Tilton A. K. [et al.]. Clinical outcomes after microfracture of the knee: midterm follow-up. Orth. J. Sports Med. 2018;6(2):23-25. https://doi.org/10.1177/2325967117753572
16. Hashimoto Y., Nishida Y., Takahashi S., Nakamura H., Mera H. [et al.]. Transplantation of autologous bone marrowderived mesenchymal stem cells under arthroscopic surgery with microfracture versus microfracture alone for articular cartilage lesions in the knee: a multicenter prospective randomized control clinical trial. Reg. Therapy. 2019;11:106-113. https://doi.org/10.1016/j.reth.2019.06.002
17. Egiazaryan K. A., Lazishvili G. D., Ratyev A. P., Sirotin I. V., But-Gusaim A. B. [et al.]. Modern trends in the treatment of focal cartilage defects of the knee. Surgical Practice. 2020;(3):65-72. https://doi.org/10.38181/2223-2427-2020-3-65-72
18. Airapetov G. A., Vorotnikov A. A. Replacement of bone and cartilage defects of large joints. Innovatsionnaya meditsina Kubani. – Innovative medicine of Kuban. 2019;(2):58-66. (In Russ.). https://doi.org/10.35401/2500-0268-2019-14-2-58-66
19. Lee Y. H., Suzer F., Thermann H. Autologous Matrix-Induced Chondrogenesis in the Knee: A Review. Cartilage. 2014;5(3):145-153. https://doi.org/10.1177/1947603514529445
20. Nurmukhametov M. R., Makarov M. A., Makarov S. A., Bialik E. I., Biaik V. E. [et al.]. The use of autologous matrix- induced chondrogenesis as a surgical treatment for patients with the first metatarsophalangeal joint osteoarthritis: immediate and medium-term results. Cartilage. 2021;13(Suppl 1):1354S-1365S. https://doi.org/10.1177/1947603520958127
21. de Girolamo L., Schönhuber H., Viganò M., Bait C., Quaglia A. [et al.]. Autologous Matrix-Induced Chondrogenesis (AMIC) and AMIC Enhanced by Autologous Concentrated Bone Marrow Aspirate (BMAC) Allow for Stable Clinicaland Functional Improvements at up to 9 Years Follow-Up: Results from a Randomized Controlled Study. J. Clin. Med. 2019;8(3):392. https://doi.org/10.3390/jcm8030392
22. Gupta A., Bhosale A., Balbouzis T., Smith H. J., Richardson J. B. Cartilage transplantation. Br. J. Hosp. Med. 2006;67(6):286-289. https://doi.org/10.12968/hmed.2006.67.6.21285
23. Welch T., Mandelbaum B., Tom M. Autologous Chondrocyte Implantation: Past, Present, and Future. Sports Med. Arthrosc. Rev. 2016;24(2):85-91. https://doi.org/10.1097/JSA.0000000000000115
24. Melugin H. P., Desai V. S., Levy B. A., Tanaka Y., Horibe S. [et al.]. Osteochondritis Dissecans of the Knee: Short-Term Outcomes of a Hybrid Technique to Restore a Partially Salvageable Progeny Fragment. Cartilage. 2020;11(3):300-308. https://doi.org/10.1177/1947603518796132
25. Osipov A. N., Machneva T. V., Buravlev E. A., Vladimirov Y. A. Effects of Laser Radiation on Mitochondria and Mitochondrial Proteins Subjected to Nitric Oxide. Front. Med. 2018;5:112. https://doi.org/10.3389/fmed.2018.00112
26. Dompe C., Moncrieff L., Matys J., Grzech-Leśniak K., Kocherova I. [et al.]. Photobiomodulation. Underlying Mechanism and Clinical Applications. J. Clin. Med. 2020;9(6):17-24. https://doi.org/10.3390/jcm9061724
27. Hamblin M. R. Mechanisms and mitochondrial redox signaling in photobiomodulation. Photochem. Photobiol. 2018;94(2):199-212. https://doi.org/10.1111/php.12864
28. Zadik Y., Arany P. R., Fregnani E. R., Bossi P., Antunes H. S. [et al.]. Systematic review of photobiomodulation for the management of oral mucositis in cancer patients and clinical practice guidelines. Sup. Care Cancer. 2019;27(10):3969-3983. https://doi.org/10.1007/s00520-019-04890-2
29. de Oliveira M. F., Johnson D. S., Demchak T., Tomazoni S. S., Leal-Junior E. C. Low-intensity LASER and LED (photobiomodulation therapy) for pain control of the most common musculoskeletal conditions: a literature review. Eur. J. Phys. Rehabil. Med. 2021. https://doi.org/10.23736/S1973-9087.21.07236-1
30. Im G. I. Perspective on Intra-articular Injection Cell Therapy for Osteoarthritis Treatment. Tissue Eng. Regen. Med. 2019;16(4):357-363. https://doi.org/10.1007/s13770-018-00176-6
31. Belk J. W., Kraeutler M. J., Houck D. A., Goodrich J. A., Dragoo J. L., McCarty E. C. Platelet-rich plasma versus hyaluronic acid for knee osteoarthritis: a systematic review and meta-analysis of randomized controlled trials. Am. J. Sports Med. 2021;49(1):249-260. https://doi.org/10.1177/0363546520909397
32. Migliore A., Paoletta M., Moretti A., Liguori S., Iolascon G. The perspectives of intra-articular therapy in themanagement of osteoarthritis. Expert Opin. Drug Deliv. 2020;17(9):1213-1226. https://doi.org/10.1080/17425247.2020.1783234
33. Berdugin K.A., Kadyncev I. V., Berdugina O. V., Taskina E. A., Kashevarova N. G. Evaluation of the efficacy and safety of combination therapy with a symptomatic delayed-release drug and hyaluronic acid in comparison with monotherapy with hyaluronic acid in patients with osteoarthritis of the knee joint. Sovremennaya revmatologya. – Modern rheumatology. 2020;14(3):63-70. (In Russ.). https://doi.org/10.14412/1996-7012-2020-3-63-70
34. Ryabinin S. V., Samoday V. G. Comparative evaluation of the clinical efficacy of gonarthrosis treatment using autogenic growth factors and hyaluronic acid. Vestnik Voronezhskogo gosudarstvennogo universiteta. – Herald of Voronezh State University. 2017;20:131-133. (In Russ.). https://doi.org/10.21518/2079-701X-2017-20-131-133
35. Bowman S., Awad M. E., Hamrick M. W., Hunter M., FulzeleS. Recent advances in hyaluronic acid based therapy for osteoarthritis. Clin. Transl. Med. 2018;7(1):6. https://doi.org/10.1186/s40169-017-0180-3
36. Bąkowski P., Kaszyński J., Wałecka J., Ciemniewska-Gorzela K., Bąkowska-Żywicka K., Piontek T. Autologous adipose tissue injection versus platelet-rich plasma (PRP) injection in the treatment of knee osteoarthritis: a randomized, controlled study – study protocol. BMC Musc. Dis. 2020;21(1):314. https://doi.org/10.1186/s12891-020-03345-8
37. Etulain J., Mena H. A., Meiss R. P., Frechtel G., Gutt S. [et al.]. An optimised protocol for platelet-rich plasma preparation to improve its angiogenic and regenerative properties. Sci. Rep. 2018;8(1):115. https://doi.org/10.1038/s41598-018-19419-6
38. Rodas G., Soler R., Balius R., Alomar X., Peirau X. [et al.]. Autologous bone marrow expanded mesenchymal stem cells in patellar tendinopathy: protocol for a phase I/II, single-centre, randomized with active control PRP, double-blinded clinical trial. J. Orthop. Surg. Res. 2019;14(1):111. https://doi.org/10.1186/s13018-019-1477-2
39. Lychagin A. V., Garkavi A. V., Ivannikov S. V., Isleyikh O. I. Arthroscopic laser surgery in combination with intraosseous administration of autologous platelet-rich plasma in the treatment of gonarthrosis. Lazernaya Meditsina. – Lazer Medicine. 2020;24(1):34-38. (In Russ.). https://doi.org/10.37895/2071-8004-2020-24-1-34-38
40. Delgado D., Garate A., Vincent H., Bilbao A. M., Patel R. [et al.]. Current concepts in intraosseous Platelet-Rich Plasma injections for knee osteoarthritis. J. Clin. Orthop. Trauma. 2019;10(1):36-41. https://doi.org/10.1016/j.jcot.2018.09.017
41. Sundaram K., Vargas-Hernández J. S., Sanchez T. R., Moreu N. M., Mont M. A. [et al.]. Are Subchondral Intraosseous Injections Effective and Safe for the Treatment of Knee Osteoarthritis? A Systematic Review. J. Knee Surg. 2019;32(11):1046-1057. https://doi.org/10.1055/s-0039-1677792

Keywords: articular cartilage, osteoarthritis, cartilage regeneration, chondroplasty


Founders:
Stavropol State Medical Academy
Pyatigorsk State Research Institute of Balneotherapeutics
Pyatigorsk State Pharmaceutical Academy